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Abstract—In this paper, we investigate the use of first-order
reliability methods to quantify the uncertainty in the remaining
useful life (RUL) estimate of components used in engineering
applications. The prediction of RUL is affected by several sources
of uncertainty, and it is important to systematically quantify
their combined effect on the RUL prediction in order to aid
risk assessment, risk mitigation, and decision-making. While
sampling-based algorithms have been conventionally used for
quantifying the uncertainty in RUL, analytical approaches are
computationally cheaper, and sometimes they are better suited
for online decision-making. Exact analytical algorithms may not
be available for practical engineering applications, but effective
approximations can be made using first-order reliability methods.
This paper describes three first-order reliability-based methods
for RUL uncertainty quantification: first-order second moment
method (FOSM), the first-order reliability method (FORM), and
the inverse first-order reliability method (inverse-FORM). The
inverse-FORM methodology is particularly useful in the context
of online health monitoring, and this method is illustrated using
the power system of an unmanned aerial vehicle, where the goal
is to predict the end of discharge of a lithium-ion battery.

NOMENCLATURE

t Continuous time index

k Discrete time index

x(t) State vector

θ(t) Parameter vector

u(t) Input vector

v(t) Process Noise vector

y(t) Output vector

n(t) Measurement noise vector

Φ(.) Standard normal distribution

ABBREVIATIONS

RUL Remaining Useful Life

FOSM First-Order Second moment Method

FORM First-Order Reliability Method

SOC State Of Charge

I. INTRODUCTION

The need for an accurate, efficient health management

system has become exceedingly important in safety-critical

and mission-critical engineering systems. The goal of health

management is to constantly monitor the performance of

these systems, perform diagnosis (fault detection, isolation,

and estimation), perform prognosis (predict possible failures

in the future and estimate remaining useful life), and aid
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online decision-making (fault mitigation, fault recovery, mis-

sion replanning, etc.). Mathematical models are developed for

individual components of the system, and these component

models can be integrated to form the overall system. The

component-level mathematical models can be constructed ei-

ther using laws of physics (physics-based models [1]) or using

data collected through component-level testing (data driven

models [2]), and are used for both system-level diagnostics [3]

and prognostics [4]. Conventionally, diagnosis is performed

at system or subsystem levels, and prognosis is performed

at component levels. However, system-level approaches to

prognostics are also available in the literature [5].

Uncertainty assessment and management are important as-

pects of health management, due to the presence of several

unknown factors that affect the operations of the system

of interest. Therefore, it is not only important to develop

robust algorithms for diagnosis and prognosis, i.e., accurately

perform diagnosis and prognosis in the presence of uncertainty,

but also important to quantify the amount of confidence in the

results of diagnosis and prognosis. This important task can be

accomplished by quantifying the uncertainty in fault diagnosis

and prognosis. It is also necessary to perform such uncertainty

quantification (UQ) online to enable in-flight decision-making

capabilities. Sankararaman and Mahadevan [6], [7] devel-

oped statistical (both frequentist and Bayesian) approaches

to quantify the uncertainty in the three steps of diagnosis

(detection, isolation, estimation) in an online health monitoring

framework.

Recent research efforts in the domain of health monitoring

have focused on prognostics and condition-based maintenance.

An important aspect of prognostics is the accurate estimation

of remaining useful life (RUL). Bo Sun et al. [8] discuss

the benefits of prognostics, and explain how the calculation

of RUL is important for technical health determination and

life extension [9] in the context of condition-based monitor-

ing [10]. Degradation signals [11], [12] and deterioration mod-

els [13] have been used in combination with statistical methods

for estimating the remaining useful life in prognostics. Re-

searchers have investigated both model-based approaches [14]

and data-driven approaches [15] for prognostics [16] and RUL

prediction [17]. These methods have been applied to a variety

of applications including mechanical bearings [18], gears [19],

lithium-ion batteries [20], etc.

The importance of uncertainty significantly increases in the

context of prognosis because the focus is on predicting future

behavior, which is far more challenging and uncertain than

diagnosis. There have been several attempts in the past to

quantify uncertainty in prognosis and RUL estimation. Tang
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et al. [21] discuss the use of Bayesian tracking algorithms

for uncertainty quantification and management in prognostics

for Integrated Vehicle Health Management (IVHM) systems.

The Damage Prognosis Project at Los Alamos National Lab-

oratory [22], [23] exclusively dealt with prognosis and uncer-

tainty quantification applied to structural composites. Several

researchers worked on this project and published articles

that deal with model development, verification, validation,

prediction, and uncertainty quantification; the conclusions of

this project have been documented by Farrar et al [24].

Sankararaman et al. [25], [26] quantified the uncertainty in

fatigue crack growth prognosis in metals by using finite

element models (for structural analysis), crack growth models

(to predict future crack growth), and Monte Carlo simulation

(for uncertainty quantification). Gu et al. [27] also used Monte

Carlo simulation to compute the uncertainty in damage in

electronics subjected to random vibration. In some practical

applications, Monte Carlo simulation using exhaustive sam-

pling may be computationally expensive, and this challenge

has inspired the development of intelligent sampling-based

algorithms [14], [28]–[30], and mathematical techniques such

as relevance vector machines [31] and principle component

analysis [32], that can reasonably approximate the uncertainty

in the prognostics. Further, Bayesian [33] and maximum rela-

tive entropy methods [34] have also been used for estimating

uncertainty in prognostics.

While existing methods for prognostics uncertainty quantifi-

cation are mostly based on sampling, this paper investigates

the use of analytical algorithms for calculating the uncertainty

in RUL prediction. Several analytical algorithms such as

the first-order second moment method (FOSM), first-order

reliability method (FORM), second-order reliability method

(SORM), etc. have been used to calculate the reliability of

structural systems in the past [35]–[39]. These methods are

collectively known as first-order reliability methods [39]; they

are based on the explicit definition of performance functions

or limit state functions, and are commonly used to calculate

the probability of failure of structural systems.

The contribution of this paper is to extend the use of

the FOSM [36], [40] and FORM [41], [42] methods for

use with state space models, and develop a computational

framework to calculate the entire probability distribution of the

remaining useful life prediction, instead of simply calculating

the probability of failure. A few practical challenges are

encountered in this regard, and new statistical approaches

are presented in this paper to overcome these challenges.

Further, a generic computational framework for uncertainty

quantification in online health monitoring and prognostics is

developed, and first-order reliability methods are integrated

into this framework to aid the prediction of RUL.

There are two major advantages from using first order

reliability methods for estimating the uncertainty in RUL

prediction. First, these methods require very few prognos-

tic evaluations in comparison with several sampling-based

approaches, and therefore are suitable for online prognostic

calculations. Second, these methods can produce repeatable

(deterministic) calculations, i.e., the exact same PDF for RUL

is obtained on every repetition of the algorithm. It is worth

noting that the latter feature is an important criterion for

existing verification, validation, and certification protocols in

the aerospace domain. Therefore, investigating such analytical

algorithms allows us to move a step closer towards adopting

prediction algorithms (which are inherently stochastic), by

meeting the needs of the current certification process.

II. PROGNOSIS, AND RUL CALCULATION

This section formulates the prognosis problem, and explains

the estimation of RUL, without considering the effects of

uncertainty. Consider an arbitrary time instant tP at which the

remaining useful life needs to be predicted, i.e., tP denotes

the time of the prediction. The architecture for model-based

prognosis is first explained, and then it is demonstrated that the

remaining useful life can be expressed as a function of other

quantities; this functional formulation will aid in uncertainty

quantification in the following sections.

A. Architecture for Model-Based Prognostics

As explained by Daigle and Goebel [4], it is important

to develop an architecture for model-based prognostics for

practical engineering purposes. As seen from Fig. (1), there

are three steps that need to be performed: state estimation,

state prediction, and remaining useful life computation.

1) State Estimation: The first step of estimating the state at

tP serves as the precursor to prognosis and RUL computation.

Consider the state space model, which is used to continuously

predict the state of the system, as

ẋ(t) = f(t,x(t), θ(t),u(t),v(t)). (1)

The state vector at time tP , i.e., x(t) (and the parameters

θ(t), if they are unknown), is (are) estimated using output data

collected until tP . Let h denote the output equation. Then,

y(t) = h(t,x(t), θ(t),u(t),n(t)). (2)

Typically, filtering approaches such as Kalman filtering, parti-

cle filtering, etc. may be used for such state estimation [43].

2) State Prediction: Having estimated the state at time

tP , (1) is used to predict the future states of the component

or system. This differential equation can be discretized and

used to continuously predict x(t) for all t > tP . Because

time-discretization is employed during implementation, time

is indicated through the discrete time-index k. There exists a

one-to-one mapping between continuous time t and discrete

time-index k; for example, if time is discretized every 0.1 s,

and if continuous time t = 0 corresponds to the time-index

k = 1, then t = 0.1 corresponds k = 2, t = 0.2 corresponds

to k = 3, and so on. For the purpose of illustration, let tk

denote the time instant corresponding to a generic time-index

k, and kt denote the time-index corresponding to a generic

time instant t. Further, let kP denote the time-index which

corresponds to the time instant tP ; therefore, tkP = tP , and

ktP = kP . Using the recursive discretized state space equation,

the state at any future time instant can be calculated as x(k)
for all k > kP .
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u(t) y(t) x(tP )
System Check for failure1. Estimation 2. Prediction

3. RUL Computation

Continue future state prediction until failure

x(t)

t > tP

Fig. 1: Model-Based Prognostics Architecture.

3) RUL Computation: RUL computation is concerned with

the performance of the component that lies outside a given

region of acceptable behavior. The desired performance is

expressed through a set of nc constraints, CEOL = {ci}nc

i=1,

where ci : R
nx × R

nθ × R
nu → B maps a given point

in the joint state-parameter space given the current inputs,

(x(t), θ(t),u(t)), to the Boolean domain B , [0, 1], where

ci(x(t), θ(t),u(t)) = 1 if the constraint is satisfied, and 0
otherwise [44].

These individual constraints may be combined into a single

threshold function TEOL : Rnx ×R
nθ ×R

nu → B, defined as

TEOL(x(t), θ(t),u(t)) =

{

1, 0 ∈ {ci(x(t), θ(t),u(t))}nc

i=1

0, otherwise.

(3)

TEOL is equal to 1 when any of the constraints are violated.

Then, the End of Life (EOL), denoted by E, at any time instant

tP , is then defined as the earliest time point at which the value

of TEOL becomes equal to one. Therefore,

E(tP ) , inf{t ∈ R : t ≥ tP ∧ TEOL(x(t),θ(t),u(t)) = 1}. (4)

The Remaining Useful Life (RUL), denoted by R, at time

instant tP , is expressed as

R(tP ) , E(tP )− tP . (5)

Note that the output (2) is not used in the prediction stage

because EOL and RUL are not defined as functions of the

output data ((y(t))).
As stated earlier, time is discretized for the sake of numer-

ical implementation; therefore, kE(tP ) denotes the time-index

that corresponds to the end of life. For the sake of simplicity,

the RUL can also be defined as a function of the prediction

time-index as R(kP ).

B. RUL: A Dependent Quantity

Thus, it is clear that RUL predicted at time tP (equivalently,

time-index kP ), i.e., R(tP ) (or R(kP )) depends on several

factors.

1) Present state estimate (x(kP )) - using the present state

estimate, and the state space (1), the future states

(x(kP ), x(kP + 1), x(kP + 2), ..., x(kE(tP ))) can be

calculated.

2) Future loading (u(kP ), u(kP + 1), u(kP + 2), ...,

u(kE(tP ))) - these values are needed to calculate the

future state values using the state space equations.

3) Parameter values from time-index kP until time-index

kE(kP ) - these values are denoted by θ(kP ), θ(kP +1),
..., θ(kE(tP )).

4) Process noise - these values are v(kP ), v(kP + 1),
v(kP + 2), ..., v(kE(tP )).

For the purpose of RUL prediction, all of the above

quantities are functionally independent of each other;

hence, RUL becomes a functionally dependent quantity. Let

X = {X1, X2, ...Xi, ...Xn} denote the vector of all the above

dependent quantities, where n is the length of the vector X ,

and therefore the number of uncertain quantities that influence

the RUL prediction. Then the calculation of RUL (denoted by

R) can be expressed in terms of a function, as

R = G(X) (6)

The above functional relation (6) can be graphically explained,

as shown in Fig. (2).

For example, consider the case where the component or

system is subjected to uniform loading (characterized by one

variable, the amplitude, which remains constant with time),

modeled using one parameter (which is invariant with time),

and characterized using two states (the state estimates at time

tP , and (1) can be used to predict the state values at any future

time instant). Then, excluding the effect of process noise, there

are n = 4 quantities that affect the RUL prediction. Note

that there are kE(tP ) − kP + 1 process noise terms for each

state; therefore, the inclusion of process noise increases the

value of n, and therefore the dimensionality of the problem.

This raises a practical concern that will be addressed later

in Section VII. Knowing the values of X , it is possible to

compute the value of R, using Fig. (2) equivalently represented

by (6). In the present paper, the quantities contained in X

are considered to be uncertain, and the focus is to compute

their combined effect on the RUL prediction. This task can be

accomplished by computing the probability distribution of the

RUL R. The following section discusses these uncertainties

in detail, and illustrates how the RUL computation can be

viewed as an uncertainty propagation problem, that can be

solved using statistical approaches.

III. UNCERTAINTY IN RUL

This section discusses the different sources of uncertainty

that affect the RUL prediction, and analyzes the various issues

concerned with RUL prediction. In a practical engineering

problem, all the quantities contained in X in (6) are uncertain,

and therefore, quantifying the uncertainty in RUL is equivalent

to propagating the uncertainty in X through G. For the sake

of clarity, the various sources of uncertainty in prognostics

can be classified into the following categories. While the first

two categories of uncertainty (present uncertainty and future
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Compute x(k + 1)

Discretize Eq. (1)

x(kP )

Present State

u(kP ), u(kP + 1),

... u(kE(tP ))

Future Loading

θ(kP ), θ(kP + 1),

... θ(kE(tP ))

Future Parameters

v(kP ), v(kP + 1),

...v(kE(tP ))

Future Process Noise

TEOL

Using

x(k)

k = kP

Assign k = k + 1

if TEOL = 1

if TEOL = 0

R = tk − tP

R = G(X)

Fig. 2: Definition of G.

uncertainty) are inherent to the prognostics problem, the third

category (modeling uncertainty) is inherent to the model-

based prognostics architecture, and the fourth category (UQ

method uncertainty) is inherent to the choice of uncertainty

quantification method.

1) Present uncertainty: Prior to prognosis, it is important

to be able to precisely estimate the condition-state of

the component or system at the time tP at which RUL

needs to be predicted. As explained earlier, this problem

is related to state estimation, and commonly addressed

using filtering. Output data (usually collected through

sensors) is used to estimate the state, and many filter-

ing approaches are able to provide an estimate of the

uncertainty in the present state, i.e., x(tP ). Practically,

it is possible to improve the estimate of the states, and

thereby reduce the uncertainty, by using better sensors

and advanced filtering approaches.

2) Future uncertainty: The most important source of

uncertainty in the context of prognostics is due to the

fact that the future is unknown, i.e. both the loading

and operating conditions are not known precisely, and

it is important to assess the uncertainty in loading and

environmental conditions before performing prognostics.

If these quantities were known precisely (without any

uncertainty), then there would be no uncertainty regard-

ing the true remaining useful life of the component or

system. However, this true RUL needs to be estimated

using a model that predicts the future evolution of the

engineering component or system; the usage of a model

imparts additional uncertainty as explained below.

3) Modeling uncertainty: This paper uses the model-based

prognostics architecture (Fig. (1)) for RUL prediction.

Therefore, the response of the component or system

to the loading and operating conditions is computed

through a physics-based state-space model. Modeling

uncertainty represents the difference between the pre-

dicted response and the true response (which can neither

be known nor measured accurately), and comprises

of several parts: model parameters, model form, and

process noise. While it may be possible to quantify these

terms until t ≤ tP , it is practically challenging to know

their values at future time instants, i.e, t > tP .

4) UQ-Method uncertainty: Even if all the above sources

of uncertainty can be quantified accurately, it is nec-

essary to quantify their combined effect on the RUL

prediction, and thereby quantify the overall uncertainty

in the RUL prediction. This process is equivalent to

propagating the uncertainty in X through G, and the

resultant uncertainty in RUL is expressed using the

probability density function (PDF) or the cumulative

distribution function (CDF). To precisely estimate the

actual PDF (or CDF) of RUL, it is necessary to use an

infinite (theoretically) number of samples of X; each

of these samples is used to calculate R using (6), and

the resultant samples of R can be used to estimate both

the PDF and CDF. Because it is not practically possible

to use such an approach, researchers have developed

alternate methods (both sampling-based and analytical).

None of the sampling-based approaches can calculate

the entire PDF or CDF accurately, because they would

depend on the choice and location of samples. Exact

analytical approaches are also unavailable in the context

of prognostics; even if the state-space models and the

EOL-threshold functions are linear, their combination

renders G non-linear, and closed-form expressions for

uncertainty propagation do not exist. Hence, it is nec-

essary to resort to alternate, approximate UQ-methods.

Therefore, it is important to understand that additional

uncertainty is imparted by the uncertainty propagation

method, and if possible, quantify this uncertainty.
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The quantification of UQ-method uncertainty depends on

the choice of the method used for uncertainty propagation.

Further, each of the existing methods for uncertainty prop-

agation may have a different motive. Monte Carlo sam-

pling (MCS) attempts to approximate the entire probability

distribution (PDF or CDF); it can be theoretically proved

that calculating all the moments (mean, variance, skewness,

kurtsosis, and so on) is equivalent to calculating the entire

probability distribution. If a larger number of samples is

used in MCS, higher order moments can be calculated, and

therefore the entire probability distribution can be approxi-

mated with increased accuracy. Adaptive sampling focuses on

estimating the cumulative distribution function (CDF) value,

i.e., calculating the probability that the RUL is less than a

given value. These two sampling methods use random samples

for uncertainty quantification, and hence produce different

results (albeit similar) on repeating the algorithm, because

each repetition draws a different set of random samples. On

the other hand, unscented transform sampling deterministically

selects samples (i.e., without random sampling) to compute

the first two moments (equivalently, mean and variance) of

RUL [14], [45]. While it is important to calculate the first

two moments of RUL, it is equally important to estimate

the tail probabilities of the distribution of RUL, because

failure is often caused due to events related to the tails of

probability distributions. In other words, in a well-designed

system, the probability of failure is very small (usually of the

order of 10−3 or less), and to compute the value of RUL

that corresponds to such low probabilities, it is important

to accurately estimate the tail of the probability distribution

of RUL. First-order reliability methods can not only quickly

calculate tail probabilities but also approximate the entire CDF

of RUL. However, these methods are based on repeated, piece-

wise linear approximation of G, and this approximation may

lead to a deviation from the actual RUL distribution. While this

paper does not attempt to quantify this deviation, the results

from FORM will be verified by comparison against exhaustive

sampling (Monte Carlo sampling), thereby demonstrating that

the method uncertainty is negligible.

Note that the goal of this paper is simply to investigate the

use of first-order reliability methods (FORM) for uncertainty

quantification in RUL prediction, and a few simplifying as-

sumptions are made regarding some of the above types of

uncertainty. For example, the future loading is assumed to

be constant, and the amplitude is chosen to be random. In

the context of model uncertainty, process noise is included,

but the model parameters are assumed to be known (without

uncertainty), and model form uncertainty is not considered. In

fact, rigorous methods to quantify the model form uncertainty

in prognostics have not been developed. Future work will deal

with rigorous uncertainty quantification by including variable

amplitude loading, operational, and environmental conditions,

model form uncertainty, etc. In this paper, the applicability of

FORM-based methods to prognostics alone is discussed, and

these methods are presented in the following sections. These

methods include the first-order second moment method, the

first-order reliability method, and the inverse first-order reli-

ability method. All three methods are computationally cheap

(because they require very few prognostic evaluations), and

are therefore suitable for online health monitoring. Further, the

methods also result in repeatable (deterministic) calculations,

i.e., their results do not change on repetition, unlike sampling-

based methods. The difference between the three methods is

that they compute different quantities; while FOSM estimates

the first-order mean and variance of RUL, FORM calculates

the cumulative distribution function of RUL, and inverse-

FORM calculates the inverse cumulative distribution function

of RUL.

IV. FIRST-ORDER SECOND MOMENT METHOD

The FOSM approach [36], [40], [46], as the name suggests,

is a simple approximation of R using first-order Taylor series

expansion. The first two moments, i.e. mean (µX ) and variance

(σX ) of X , are used to approximate the first two moments

of R. Consider the first-order Taylor series expansion of R =
G(X) around µX , as

R = G(µX ) +

i=n
∑

i=1

(Xi − µXi
)

(

∂G

∂Xi

)

µX

. (7)

Note that, now, R is a linear function of X with the partial

derivatives as coefficients, and therefore it is straightforward

to approximate the mean and variance of R, as

µR = G(µX) (8)

σ2
R =

i=n
∑

i=1

j=n
∑

j=1

(

∂G

∂Xi

)

µX

(

∂G

∂Xj

)

µX

Cov(Xi, Xj). (9)

When the inputs to G are uncorrelated, the expression for

variance in (9) simplifies to

σ2
R =

i=n
∑

i=1

(

∂G

∂Xi

)2

µX

σ2
Xi

. (10)

Note that the first-order second moment approach can only

compute the mean and variance of the remaining useful life

(R) prediction. It is not directly useful for estimating the type

of probability distribution of R, and cannot be used to calculate

tail probabilities. However, if each of the inputs Xi were to be

normally distributed (and s-independent of each other), then

it can be easily proved that their linear combination is also

a normally distributed variable [39]. This observation is used

to develop a general methodology to calculate the entire CDF

of the Remaining Useful Life (R) prediction in the following

stages.

1) FORM - The FOSM approach linearized G at µX . By

altering the location (point) of linearization, the FOSM

approach is extended to the FORM [41], [47] approach.

a) Normally Distributed Variables - First, consider

the case when the variables (X) are normally

distributed. Even in this case, the FOSM method

yields accurate results only when G is linear. When

G is non-linear, it is not appropriate to always cal-

culate the gradient of G at the mean µX . This leads

to the obvious question: why linearize at the mean?

The location of linearization is chosen analytically,
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and then used to calculate the CDF of RUL at a

particular R = r, i.e., FR(R = r) = P (R ≤ r).
(Note that an upper case letter refers to the name

of a random variable, whereas the corresponding

lower case letter refers to its realization.) It will be

illustrated that the point of linearization varies with

the choice of r. By repeating the entire process

for different choices of r, the entire CDF can be

calculated. This method, known as the first-order

reliability method, is discussed in Section V-A.

b) Non-normally Distributed Variables - Then, this

FORM approach is extended to non-normally dis-

tributed variables in Section V-B.

2) Inverse FORM - While Section V deals with calculating

the CDF value for a given realization of R, Section VI

considers the inverse problem, i.e. calculating the real-

ization of R that corresponds to a given CDF value.

This method, popularly known as the inverse-FORM

approach [42], can be used to calculate probability

bounds on the remaining useful life prediction, and

hence is useful for online decision-making.

V. FIRST-ORDER RELIABILITY METHOD

The first-order reliability method (FORM) was originally

developed by structural engineers to estimate the reliability

of structural systems [35]. The main contribution of this

paper is to extend this method to state space models and

health monitoring with the goal of computing the probability

distribution of RUL. Though the estimation of reliability and

the calculation of CDF are statistically equivalent, the FORM

method is described purely from an uncertainty propagation

perspective, without reference to reliability calculation.

A. Normal Variables

In this subsection, assume that all the uncertain variables

follow Gaussian distributions, i.e., Xi ∼ N(µXi
, σXi

) for all

i. When Kalman filtering-based approaches (such as extended

Kalman filtering, unscented Kalman filtering, etc.) are used

for state estimation, x(tP ) is normally distributed. It is also

common to choose normal distributions for quantities that rep-

resent process noise. In addition, this paper considers constant

amplitude loading, and the amplitude may also be chosen to

be normally distributed. Therefore, the FORM method is first

explained for normal variables in this subsection.

Consider (6), which expresses the RUL as a function of

the various sources of uncertainty. The goal of the FORM

approach is to calculate the CDF value, i.e. FR(r) = P (R ≤
r), given r, a realization of the random variable R. FORM

achieves this goal by approximating the non-linear equation

R = G(X) using a linear equation to easily compute the CDF

of R. The linear equation is constructed using a Taylor series

approximation around the so-called point of linearization. The

difference in FORM (with respect to FOSM) is that the point

of linearization varies from one choice of r to another. The

identification of the point of linearization is the most important

component of FORM.

G(X) − r = 0

MPP

u1

u2

β

Standard

Normal
Space Region 1

Region 2

G(X) < r

G(X) > r

Linear

Approximation

Fig. 3: Most Probable Point Estimation.

To calculate FR(r) = P (R ≤ r), consider the contours of

the function R− r = G(X)− r; in particular, consider the

curve described by G(x) − r = 0, where x is a realization

of X . This curve differentiates the multidimensional space

into two regions: one region where R < r, and another

region where R > r, as shown in Fig. (3). (This curve of

demarcation is popularly called the limit state in reliability

analysis [39]. The equation corresponding to the limit state

divides the space into two zones: a zone of failure, and a zone

of safety. This terminology is not used in this paper because

FORM is used here for uncertainty propagation rather than

reliability calculation. For details of the original method, refer

to Rackwitz and Fiessler [35], Sitar et al. [48], Haldar and

Mahadevan [39], etc.)

Any point lying on the curve of demarcation would satisfy

the equation R = G(X). Because this curve serves as the

demarcation between the two zones given by R > r and R <
r, and it is of interest to calculate the probability P (R ≤ r),
it is intuitive that it is important to identify a linear function

which closely resembles the contour G(x)−r = 0. Hence, the

point of linearization must lie on this curve of demarcation; in

other words, the point of linearization must satisfy G(x)−r =
0. This is clearly different from the FOSM approach, where

the mean µX was chosen as the point of linearization; for an

arbitrary choice of r, it is obvious that the mean µX will not

satisfy this equation.

Therefore, the point of linearization should be located on

the curve of demarcation. However, there are infinite points

that satisfy this criterion, and it is important to select the

appropriate one. Each of these infinite points has a likelihood

of occurrence, and intuitively the point of maximum likelihood

is chosen as the point of linearization. This likelihood can

be calculated using the probability density function of the

underlying random variables. For a single normal random

variable X with mean µ and standard deviation σ, the PDF is

given by

fX(x|µ, σ) = 1

σ
√
2π

exp

[

− (x− µ)2

2σ2

]

. (11)

For example, when µ = 10, and σ = 1, x = 10 is 1.65 times

more likely to occur than x = 9. The maximum value of the
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likelihood function occurs at x = µ; therefore, the farther x is

away from the mean µ, the lower the likelihood of occurrence

of x. As explained earlier, the mean cannot be chosen as the

point of linearization because G(µ)−r 6= 0. Therefore, if there

is a single input variable, the point of linearization is chosen

in such a way that it satisfies the equation G(x)− r = 0, and

the value of ||x− µ|| is minimum.

However, in a general uncertainty propagation problem, the

input to G is a vector, i.e., X = {X1, X2, ... Xi, ...Xn}, and

each Xi has its own mean µXi
and standard deviation σXi

.

The objective is to identify the point of maximum likelihood,

which can be calculated by maximizing the joint probability

density function of all the input random variables. If the

variables are s-independent, then the joint density function of

X is expressed as

fX(x) =

i=n
∏

i=1

1

σi

√
2π

exp

[

− (xi − µi)
2

2σ2
i

]

. (12)

It can be verified (by taking the logarithm) that the maximizer

of the above function simultaneously minimizes

β =

√

√

√

√

i=n
∑

i=1

(xi − µi

σi

)2

. (13)

Equation (13) can be rewritten as

β =

√

√

√

√

i=n
∑

i=1

u2
i , (14)

where

ui =
xi − µi

σi

. (15)

If the above computation were performed for every realization

xi of the random variable Xi, then the corresponding ui

would be realizations of the standard normal variable Ui,

i.e., Ui ∼ N(0, 1). Therefore, (15) is referred to as the

standard normal transformation. In the space of standard

normal variables, maximizing the likelihood of occurrence is

equivalent to minimizing (14), which implies that the point of

linearization is that point on the curve of demarcation whose

distance (measured in the standard normal space) from the

origin is minimum. Because the point of linearization has the

maximum likelihood of occurrence, it is popularly known as

the Most Probable Point (MPP), as indicated in Fig. (3). The

Most Probable Point is closest to the origin (in the standard

normal space), and from (14) and (15), it can be seen that the

distance of MPP from the origin is exactly equal to β. In fact,

it can be proved that

P (R ≤ r) ≈ Φ(−β) (16)

where Φ(.) represents the standard normal cumulative distri-

bution function. To prove (16), consider the first order Taylor’s

series expansion of Z = G(X)− r by linearizing around the

MPP. Then, Z is approximated to be a normal random variable

(denoted by Z̃) with mean µZ̃ , and standard deviation σZ̃ . The

CDF value of Z measured at Z = 0 is equal to P (R ≤ r),
and is calculated in terms of µZ̃ and σZ̃ as

P (Z ≤ 0) = P (R ≤ r) ≈ Φ(−µZ̃

σZ̃

). (17)

Using this Taylor series expansion, it can be proved that [39]

β =

√

√

√

√

i=n
∑

i=1

u2
i =

µZ̃

σZ̃

. (18)

Note that an approximation symbol is used in (16) and

(17) because only the first-order term in the Taylor series is

considered in (7).

Therefore, the problem of calculating the CDF reduces

to identifying the MPP on the curve of demarcation. This

problem can be posed as a constrained optimization problem,

as
Minimize

u
u
T
u

s.t. G(x) = r
u = {u1, u2...ui, ...un}

ui = (xi − µi)/σi

(i = 1 to n)

(19)

The above optimization problem can be solved using the

Rackwitz-Fiessler [49] algorithm, an iterative procedure, as

follows.

1) Initialize counter j = 0 and start with an initial guess

for the MPP, i.e., xj = {xj
1, x

j
2, ... x

j
i , ...x

j
n}, a column

vector.

2) Transform into standard normal space and calculate

u
j = {uj

1, u
j
2, ... u

j
i , ...u

j
n} using (15), a column vector.

3) Compute the gradient vector in the standard normal

space, i.e., α = {α1, α2, ...αn}, another column vector

where

αi =
∂G

∂ui

=
∂G

∂xi

× ∂xi

∂ui

=
∂G

∂xi

× σi (20)

4) In the iterative procedure, the next point uj+1 is calcu-

lated using a Newton-Raphson type equation, as

u
j+1 =

1

||α|| [α
T
u
j −G(xj)]

α

||α|| (21)

5) Transform back into the original space, i.e., compute

x
j+1, and continue at Step 3 until the iterative pro-

cedure converges. Using tolerance limits δ1 and δ2,

convergence can be verified if two criteria are satisfied:

(i) the point lies on the curve of demarcation, i.e.,

|G(xj)− r| ≤ δ1; and (ii) the solution does not change

between two iterations, i.e., |xj+1 − x
j | ≤ δ2.

The above described iterative procedure usually converges

within 4 or 5 iterations. Sometimes, due to the lack of a convex

objective function, it may be challenging to calculate the MPP.

This may happen when the distribution of RUL is multi-modal.

In such cases, it may be necessary to use alternative methods

to calculate the uncertainty in RUL; this will be considered in

future work.

In this paper, it is assumed that the optimal MPP can be cal-

culated by using the above algorithm for optimization. In each

iteration of the above algorithm, note that the transformation

to the standard normal space is straightforward only when the

variables are originally normal. Therefore, the method needs to

be modified to account for non-normal variables, as explained

in the next subsection.
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B. Extension to Non-normal Variables

Now consider the case where the inputs Xi (i = 1 to n)

have arbitrary probability distributions given by their CDFs as

FXi
(xi)(i = 1 to n). Because Xi is not normally distributed,

(15) cannot be used for a standard normal transformation.

There, it is necessary to calculate ui from a given xi meaning-

fully, so that ui represents a realization of the standard normal

variable. One simple transformation is based on the probability

integral transform concept [50] as

ui = Φ−1(FXi
(Xi = xi)) (22)

where Φ−1(.) refers to the inverse of the standard normal

distribution function [39]. Now, the calculation of the gradient

in the standard normal space is different from (20), and can

be derived directly using (22), as follows. First, decompose

(22) into two parts as

vi = FXi
(Xi = xi) (23)

ui = Φ−1(vi). (24)

Then, each element of the gradient vector α = {α1, α2, ...αn}
can be calculated as

αi =
∂G

∂ui

=
∂G

∂xi

× ∂xi

∂vi
× ∂vi

∂ui

=
∂G

∂xi

× φ(ui)

fXi
(xi)

(25)

where φ(.) refers to the standard normal density function, and

fXi
(xi) is the PDF of the ith input variable Xi.

In addition to the above procedure, there are also other trans-

formation techniques. For example, a two-parameter transfor-

mation [39] procedure estimates the mean µi and standard

deviation σi of an equivalent normal distribution by solving

two simultaneous equations in µi and sigmai. These two

simultaneous equations equate the original CDF and PDF

values of Xi to the respective CDF and PDF values of the

equivalent normal distribution with mean µi and σi. Then,

(15) can be used to calculate ui from xi. Note that the mean

µi and standard deviation σi are dependent on the value of

xi. Similarly, Chen and Lind [51] proposed a three-parameter

transformation procedure by introducing a third parameter, a

scale factor which is estimated by matching the slope of the

probability density function in addition to the PDF and CDF

values. Further, when the inputs are correlated or s-dependent,

it is necessary to transform them to the uncorrelated standard

normal space. Haldar and Mahadevan [39] describe methods

for such transformations. It must be noted that any transforma-

tion must be accompanied by suitably computing derivatives

in the standard normal space, and (20) must be appropriately

replaced.

Note that the above FORM procedure calculates the CDF

value at a particular value of RUL. It answers a question: what

is the probability that the RUL is smaller than a given number?

To obtain the entire CDF, the whole procedure is repeated with

multiple values of RUL. Sometimes, it may not be possible

to identify values of RUL to calculate the entire CDF because

the spread of the distribution may not be known in advance.

So, the next section discusses the inverse-FORM procedure,

which answers a different question: what is the value of RUL

that corresponds to a given probability level? In other words,

what is the α-percentile (e.g., 5%, 95%, etc.) value of RUL?

By repeating this procedure for one lower percentile and one

upper percentile value, the probability bounds on RUL can be

calculated.

VI. INVERSE FIRST-ORDER RELIABILITY METHOD

Given β or λ = Φ(−β), the inverse-FORM approach can

be used to calculate r such that FR(r) = P (R ≤ r) = λ. The

theory behind inverse-FORM is exactly the same as FORM,

and the algorithm discussed in Section V is modified so that

the CDF value can be specified and r can be calculated. The

various steps involved in the iterative procedure for inverse-

FORM are outlined below.

1) Initialize counter j = 0, and start with an initial guess

for the MPP, i.e., xj = {xj
1, x

j
2, ... x

j
i , ...x

j
n}.

2) Transform into the standard normal space, and calculate

u
j = {uj

1, u
j
2, ... u

j
i , ...u

j
n}.

3) Compute the gradient vector in the standard normal

space, i.e., α = {α1, α2, ...αn}, as explained in Sec-

tion V-A.

4) In the iterative procedure, the next point uj+1 is calcu-

lated as

u
j+1 = − α

|α|β. (26)

5) Transform back into the original space, i.e., compute

x
j+1, and continue starting from Step 3 until the

iterative procedure converges. Using tolerance limits δ1
and δ2, convergence can be verified if two criteria are

satisfied: (i) the point lies on the curve of demarcation,

i.e., |G(xj)− r| ≤ δ1; and (2) the solution does not

change between two iterations, i.e., |xj+1 − x
j| ≤ δ2.

Similar to the Rackwitz-Fiessler algorithm, the above itera-

tive procedure also convergences within 4 or 5 iterations, and

therefore is suitable for quick calculations in an online heath

monitoring context.

As stated earlier, the inverse-FORM procedure is useful

to calculate probability bounds. For example, by repeating

the above algorithm for λ = 0.05 and λ = 0.95, it is

possible to estimate the 90% probability bounds on the re-

maining useful life. In fact, the entire CDF can be con-

structed by repeating the analysis for several values of λ
(0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99).

The advantage of inverse-FORM is that the number of prog-

nostic evaluations is extremely small compared to sampling-

based approaches. For the sake of illustration, consider that

the above iterative algorithm converges in 5 iterations. Each

iteration requires the computation of the gradient vector; if

there are n inputs, then n + 1 computations are necessary

for each evaluation: one for each derivative, and one for

the evaluation of G. Hence, the total number of prognostic

evaluations is equal to 5(n+1). If the analysis is repeated for

2 values of λ (to compute the probability bounds on RUL),

then it takes 10(k+ 1) prognostic evaluations, which is more

computationally efficient than sampling-based techniques, and

therefore suitable for online decision-making.

Therefore, this paper recommends the use of the inverse-

FORM approach for RUL uncertainty quantification; while
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FOSM is not accurate (due to the choice of point of lineariza-

tion), FORM requires the algorithm to choose values of RUL

for which the CDF needs to be calculated, and this choice

may not be obvious in practical applications. However, the

discussion on FOSM and FORM preceded the discussion on

inverse-FORM so as to motivate and develop the concept of

MPP, and culminate in the development of an algorithm for

inverse-FORM. In fact, the numerical example in Section VIII

will be solved using inverse-FORM; however, prior to that,

it is necessary to address certain practical challenges in the

implementation of the above described algorithm.

VII. PRACTICAL CHALLENGES

The previous sections discussed the mathematical theory

behind the application of FORM-based methods for uncer-

tainty quantification in RUL prediction. This section identifies

certain practical challenges which may be encountered during

the implementation of FORM-based methods for online health

monitoring, and proposes statistical methods to overcome

them.

1) Implicitness of G: The FORM method and the inverse-

FORM can be applied in the presence of an explicit

function R = G(X). However, from Section II, it may

be seen that G is actually implicit, because the number

of terms in X depends on R. In this paper, by choosing

constant amplitude loading, u(t) becomes invariant with

time, and can be replaced by u. On the other hand,

the parameter values θ(t) are pre-determined (without

uncertainty), and hence don’t have to be included for

uncertainty propagation in X . However, the process

noise terms (V(k) = [v(kP ), v(kP + 1), v(kP + 2),
..., v(kE(tP ))]) still need to be included in X . It is clear

that the number of terms to include depends on R, and

hence renders G implicit. Note that the number of terms

is a function of the time-discretization chosen to solve

the differential equation in (1).

2) Curse of dimensionality: Even if the number of process

noise terms to be included may be known, there are

computational difficulties, because R (i.e., the remaining

useful life) may be on the order of hundreds or thousands

(or more), and therefore the length of the vector X

will be of the same order. Therefore, during the imple-

mentation of FORM or inverse-FORM, it is necessary

to compute the gradient of G, and this computation

will involve several hundreds or thousands (or more)

of evaluations of G. Thereby, the computational effort

involved becomes comparable with sampling-based ap-

proaches, and hence may not be suitable for online

health monitoring.

This paper proposes a new likelihood-based method that

overcomes both of the above challenges. First, suppose that

the time-variant process noise is replaced with a time-invariant

constant value denoted by vE . In other words,

v(k) := vE ∀ k ∈ [kP , k
E(tP )] (27)

The above equation means that the same realization of process

noise will be used for prediction at every future time instant.

This equation does not imply that a time-varying process, i.e.,

a random vector, can be replaced by a time-invariant constant,

i.e., a random variable. Instead, the goal is to estimate an

appropriate probability distribution for vE that can capture

the effect of the true time-varying process noise on the RUL

distribution. In other words, the goal is to choose a suitable

probability distribution for vE , so that the effect of propagat-

ing this distribution through G is equivalent to propagating

the original distribution of V(k) through G. Because this

probability distribution for vE and the probability distribution

of the actual time-varying process noise lead to the same

distribution of the RUL, vE is referred to as the equivalent

time-invariant process noise, and its probability distribution

is referred to as the equivalent time-invariant process noise

distribution.

Further, this equivalence can be numerically verified using

Monte Carlo sampling. First, generate multiple samples of

V(k) along with the other sources of uncertainty, and calculate

corresponding samples of R(kP ) (using the algorithm in

Fig. (2)) that may be used to construct the probability distri-

bution of RUL. Alternatively, select multiple samples of vE ,

along with the other sources of uncertainty, use this constant

value of process noise at every time instant in the algorithm

in Fig. (2) for every sample, and calculate the corresponding

samples of R(kP ) that may be used to construct an alternative,

equivalent distribution for RUL. The challenge is to estimate

the distribution of vE from which samples may be drawn so

that the equivalent probability distribution of RUL (estimated

using multiple samples of equivalent time-invariant process

noise vE ) is exactly the same as the original probability

distribution of RUL (estimated using multiple samples of the

original process noise V(k).
Such distribution of the equivalent time-invariant process

noise can be estimated by computing the likelihood of vE

such that (27) is satisfied. In other words, any value of vE

has an associated probability with which (27) is satisfied;

the likelihood of vE is proportional to this probability. The

probability distribution of the true process noise can be used

to calculate this likelihood as

L(vE |R(kP )) ∝
k=kE(tP )

∏

k=kP

fV(k)(V(k) = vE) (28)

where fV(k)(v(k)) is the probability density function of the

true process noise V(k). Also note that the likelihood function

is conditioned on the RUL, and written as R(kP ). Further,

the above equation assumes that the process noise values

at two different times are s-independent of each other. If

any statistical dependence is unknown, then it can be easily

included in the above equation by conditioning appropriately.

Having calculated the likelihood, the PDF of vE can be

calculated as [52]

fVE (vE |R(kP )) =
L(vE |R(kP ))

∫

D
L(vE |R(kP ))dvE

. (29)

In (29), the domain of integration D is chosen such that

vE ∈ D iff L(vE) 6= 0. Note that the definition of vE and

its probability distribution are related only to the uncertainty
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in R(kP ), and not to the Most Probable Point in the FORM

method. The only condition is that propagating the uncertainty

in vE through G needs to be equivalent to propagating

the uncertainty in V(k) through G by leading to the same

distribution for RUL.

Now the function G is not implicit because vE is simply a

time-invariant constant s-independent of R(kP ). However, the

PDF of vE is conditionally s-dependent on R(kP ), and this

s-dependence can be expressed explicitly. In other words, for a

given realization of vE (along with a realization of the present

state and future loading conditions), the value of R(kP ) can be

computed using the definition of G in Fig. (2) by substituting

v(k) = vE for all k. The calculated value of R(kP ) can then

be used to calculate the PDF fVE (vE |R(kP )). For implemen-

tation through FORM or inverse-FORM, instead of the true

process noise, the equivalent time-invariant process noise is

considered to be a part of X in R = G(X). Therefore, first an

initial value of vE is assumed (along with initial assumptions

for the present state and future loading conditions), and for

this initial assumption, both R(kP ) and fVE (vE |R(kP )) can

be calculated. Then, this PDF is transformed to the standard

normal space using (22), and the gradient in the normal space

can be computed using (25). Now, the iterative algorithms

for FORM, and inverse-FORM (in Section V, and Section VI

respectively) can then be used to update the value of vE ,

along with the other elements of X; when the algorithm

converges, the optimal value of vE , and the corresponding

value of R(kP ), can be estimated.

In this section, the time-variant process noise has been

replaced by a time-invariant equivalent, and the probability

distribution of the latter has been chosen analytically based on

the probability distribution of the former. This equivalent time-

invariant distribution has been applied only to process noise

in this paper. This concept has the potential to be applied to

time-variant model parameters, and variable-amplitude loading

conditions also; this possibility will be explored in future

research.

VIII. CASE STUDY: LITHIUM-ION BATTERY

This section presents a numerical example consisting of

a lithium-ion battery that powers an unmanned aerial vehi-

cle [53] at NASA Langley Research Center. This unmanned

aerial vehicle is being used as a test-bed for prognostics and

decision-making at NASA Ames Research Center, and NASA

Langley Research Center. The goal is to estimate the end of

discharge of the battery, which is indicative of the remaining

flight time; therefore, the end of discharge is synonymous

with the end of life, for the sake of this numerical example.

Though this numerical example deals with a battery model, the

proposed uncertainty quantification methodology is general,

and can be applicable to different types of models in several

engineering domains.

A. Description of the Model

The battery model, extended from that used by Daigle et

al. [14] for prognosis, is similar to the models presented

by Chen and Rincon-Mora [54]. The model is based on an

electrical circuit equivalent to that shown in Fig. (4), where

the large capacitance Cb holds the charge qb of the battery.

The nonlinear Cb captures the open-circuit potential, and

concentration overpotential. The Rsp-Csp pair captures the

major nonlinear voltage drop due to surface overpotential, Rs

captures the so-called Ohmic drop, and Rp models the para-

sitic resistance that accounts for self-discharge. This empirical

battery model is sufficient to capture the major dynamics of the

battery, but ignores temperature effects and other minor battery

processes. The governing equations for the battery model are

presented in continuous time below. The implementation of

the proposed methodology considers a discrete-time version

with a discrete time-step of 1 second.

Fig. 4: Battery equivalent circuit.

The state-of-charge, SOC, is computed as

SOC = 1− qmax − qb
Cmax

, (30)

where qb is the current charge in the battery (related to Cb),

qmax is the maximum possible charge, and Cmax is the

maximum possible capacity. The resistance related to surface

overpotential is a nonlinear function of SOC:

Rsp = Rsp0 +Rsp1 exp (Rsp2(1− SOC)), (31)

where Rsp0 , Rsp1 , and Rsp2 are empirical parameters. The

resistance, and hence the voltage drop, increases exponentially

as SOC decreases.

Voltage drops across the individual circuit elements are

given by

Vb =
qb
Cb

, (32)

Vsp =
qsp
Csp

, (33)

Vs =
qs
Cs

, (34)

Vp = Vb − Vsp − Vs, (35)

where qsp is the charge associated with the capacitance Csp,

and qs is the charge associated with Cs. The voltage Vb is also

the open-circuit voltage of the battery, which is a nonlinear

function of SOC [54]. This is captured by expressing Cb as

a third-order polynomial function of SOC:

Cb = Cb0 + Cb1SOC + Cb2SOC2 + Cb3SOC3. (36)

The terminal voltage of the battery is

V = Vb − Vsp − Vs. (37)
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TABLE I: Battery Model Parameters

Parameter Value Unit

Cb0 19.80 Farad (F)
Cb1 1745.00 Farad (F)
Cb2 −1.50 Farad (F)
Cb3 −200.20 Farad (F)
Rs 0.0067 Ohm (Ω)
Cs 115.28 Farad (F)

Rp 1× 104 Ohm (Ω)
Csp 316.69 Farad (F)
Rsp0 0.0272 Ohm (Ω)

Rsp1 1.087× 10−16 Ohm (Ω)
Rsp2 34.64 (No unit)

qmax 3.11× 104 Coulomb (C)
Cmax 30807 Coulomb (C)
VEOD 16 Volt (V)

Currents associated with the individual circuit elements are

given by

ip =
Vp

Rp

, (38)

ib = ip + i, (39)

isp = ib −
Vsp

Rsp

, (40)

is = ib −
Vs

Rs

. (41)

The charges are then governed by

q̇b = −ib, (42)

q̇sp = isp, (43)

q̇s = is. (44)

It is of interest to predict the end-of-discharge as defined

by a voltage threshold VEOD . So, CEOL consists of only one

constraint:

c1 : V > VEOD. (45)

All voltages are measured in Volts, resistances are measured

in Ohms, charges are measured in Coulombs, and capacitances

are measured in Coulombs per Volt (or Farads). Note that Cb0 ,

Cb1 , Cb2 , and Cb3 are simply fitting parameters in (36), and

do not have physical meaning.

Though the proposed methods can account for parameter

uncertainty, the parameters of this battery model are assumed

to be deterministic, and are shown in Table I. If these param-

eters are estimated to be uncertain, they can be represented

using probability distributions and included in the uncertainty

quantification procedure, as indicated earlier in Fig. (2), i.e., by

treating the uncertain parameters as a part of X in R = G(X).
The following sections deal with uncertainty quantification

in RUL prediction using the inverse-FORM approach. While

three methods (FOSM, FORM, and inverse-FORM) were

discussed in this paper, it is intuitive that the inverse-FORM is

most suitable for RUL uncertainty quantification. As explained

earlier in Section IV, FOSM is not accurate because it chooses

the mean of uncertain variables as the point of linearization;

however, it mathematically motivates the FORM method and

the inverse-FORM method. While both the FORM and inverse-

FORM approaches can be useful in prognostics, FORM can

be used only to calculate the probability that the RUL is

smaller than or greater than a given value. This value needs to

be selected by the algorithm, and this choice may become

arbitrary. Instead of specifying an arbitrary value of RUL

(which may not be known in a practical scenario), inverse-

FORM is used to quantify those values of RUL that correspond

to different probability levels such as 0.01, 0.1, 0.5, 0.90, 0.99,

etc.

B. Sources of Uncertainty

The different sources of uncertainty considered in this case

study are listed below.

1) Loading Uncertainty - Saha et al. [53] quantified the

uncertainty in the loading for a battery used to power

an unmanned aerial vehicle. Several flight segments

were identified, and the loading was quantified in each

segment. At present, the inverse-FORM methodology

has not been extended to consider variable amplitude

loading. Hence, a constant amplitude input, which is

taken to be the average current value across multiple

flight segments, is considered in this example; however,

the constant amplitude is chosen to be random. In par-

ticular, the constant amplitude (in Amps) is considered

to be normally distributed (N(35, 5)), and this distribu-

tion is truncated at a specified lower bound (5.0) and

upper bound (80) pair. Future research will rigorously

consider the inclusion of variable amplitude loading;

the equivalent time-invariant distribution concept may

be investigated for this purpose.

2) State Uncertainty - Typically, the state estimation,

which is an inverse problem, is addressed using a

filtering technique that can continuously estimate the

uncertainty in the state when measurements are contin-

uously available as a function of time. In this paper, the

state estimation is not explicitly carried out. The state

values are assumed to be available, and the uncertainty

in the states is predetermined based on the authors’ past

experiences with the use of filtering techniques for the

above described problem. There are three state variables

in this example: charge in Cb, charge in Csp, and charge

in Cs. At any time instant, they are assumed to be

normally distributed with a specified mean (shown in

Figs. (5) through (7)); for example, the mean of the

initial values of the three states are set as [3.1× 104, 0,

0]. For the purpose of illustration, three different values

of CoV (Coefficient of variation, defined as the ratio

between standard deviation and mean) are considered;

those values are 0.05, 0.10, and 0.20. The analysis is

repeated for each CoV value.

3) Process Noise Uncertainty - At any time instant, there

are three states, and hence three process noise terms. All

the three process noise terms are assumed to have zero

mean, and variances equal to 1, 1× 10−4, and 1× 10−6

respectively. For the sake of illustration, it is assumed

that the three process noise terms are s-independent, and

further these process noise values at two different time

instants are also s-independent of each other.
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Fig. 6: State No. 2: Charge in Csp.

Therefore, loading uncertainty is represented by one vari-

able, present state uncertainty is represented using three vari-

ables, and each state variable is associated with a correspond-

ing process noise term. As each of the time-varying process

noise quantities is replaced with time-invariant process noise,

there are 7 uncertain quantities. Hence, the dimension of X

in R = G(X) is equal to 7. Given a realization of each

uncertain variable, the corresponding realization of R can be

calculated using the following iterative algorithm. Note that
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Fig. 7: State No. 3: Charge in Cs.

this algorithm is simply a specific case of the more general

algorithm in Fig. (2).

1) Given a prediction time instant tP , calculate the corre-

sponding time-index kP .

2) Also given are realizations of uncertain variables, i.e.,

loading (u); present state estimate (x(kP ); a vector

consisting of 1) charge in Cb, 2) charge in Csp, and

3) charge in Cs at time-index kP ); and process noise

(V(kP )). Note that V(kP ) is a matrix of the three

process noise terms at multiple time-instants until the

end of discharge. When the equivalent time-invariant

process noise vE is used, the same value of process

noise is used at all time-instants. Note that the equivalent

process noise, i.e., vE is a vector consisting of the three

process noise terms that correspond to the three state

variables.

3) Set k = kP .

4) For a given time-index k, discretize (30) through (44)

using the Euler approach with a sampling time of 1

second to calculate all the state values, currents, and

voltages at the next time-index k + 1. At this step, use

the process noise realization v(k). Because the time-

invariant equivalent process noise is used, vE will be

used at every time-index.

5) Check if constraint c1 is violated, i.e., if the condition

V > VEOD is violated. If violated, then TEOL = 1;

otherwise, TEOL = 0.

6) If TEOL = 0, then it is necessary to continue further

prediction, and therefore set k = k + 1. Go to Step 4.

7) If TEOL = 1, then the end of life is reached, and k
corresponds to the time-index of end of life. Therefore

tk corresponds to the time of the end of life, and R =
tk − tP .

C. Verification of Equivalent Time-Invariant Process Noise

For the given specification of process noise, it can be easily

shown that, if the true distribution of the process noise follows

a normal distribution with mean 0, and standard deviation

σ, then the equivalent time-invariant process noise follows

a normal distribution with mean 0, and standard deviation
σ

√

R
, where R is the remaining useful life prediction calculated

using G. Before the equivalent process noise is directly used in

the first-order reliability method, its equivalence is numerically

demonstrated through Monte Carlo sampling.

To verify the mathematical accuracy of the proposed time-

invariant process noise approach, it is necessary to compare

two probability distributions of RUL that are obtained by using

the 1) true process noise, and 2) the equivalent time-invariant

process noise. To make a fair comparison, the other sources

of uncertainty (loading and present state) are assumed to be

absent; in other words, deterministic values (corresponding to

the mean) are chosen for u, and x(kP ). These two distributions

of RUL are calculated at tP = 0, as follows.

1) Distribution of RUL using actual process noise -

Select one sample of an entire trajectory of the actual

process noise. While generating this trajectory, different
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Fig. 8: Verification of Equivalent Time-Invariant Concept.

values of the process noise are sampled at every time-

instant. For this chosen sample, and given values of

u and x(kP ), use the above described algorithm to

calculate a corresponding sample of R(kP ). Repeat

the entire procedure for multiple samples of uncertain

quantities, and obtain corresponding samples of R(kP ).
Using these samples, the CDF of the RUL can be

constructed, as shown using a solid line in Fig. (8).

2) Distribution of RUL using equivalent time-invariant

process noise - Select one sample of the equivalent

time-invariant process noise based on its distribution,

and use it as the process noise value at every time-

instant, thereby resulting in a constant trajectory for the

entire process noise. Using the given values of u and

x(kP ), the above described algorithm can again be used

to calculate a corresponding sample of R(kP ). Finally,

repeat for multiple samples of vE , and calculate multiple

samples of R(kP ). Using these samples, the CDF of the

RUL can be constructed, as shown using a dotted line

in Fig. (8).

As seen from Fig. (8), the distribution resulting from the true

process noise and the distribution resulting from the equivalent

time-invariant process noise compare well with each other; the

minor difference can be attributed due to errors which occur

due to sampling. Thus, the concept of equivalent time-invariant

process noise which was theoretically established using (28)

has been numerically verified in Fig. (8). Here on, the time-

invariant equivalent process noise can be used in lieu of the

true process noise for uncertainty quantification along with

the other uncertain variables. The results of uncertainty quan-

tification using inverse-FORM are presented in the following

subsection.

D. Uncertainty Quantification in RUL

The inverse-FORM method is directly used to compute the

RUL value corresponding to FR(r1) = 0.01, FR(r2) = 0.5,

and FR(r3) = 0.99, for each CoV. While r1 and r3 correspond

to the 98% probability bounds of RUL, r2 corresponds the

median of RUL. The bounds and the mean are continuously

calculated until tP = 800 seconds when failure seems to

be imminent, and the inverse-FORM calculation is performed

every 50 seconds. The results of RUL calculation (r1, r2, and

TABLE II: Results of Uncertainty Quantification in RUL

tP (sec) CoV=0.05 CoV=0.10 CoV=0.15

0

r1 = 534 r1 = 501 r1 = 444
r2 = 813 r2 = 813 r2 = 813
r3 = 1278 r3 = 1327 r3 = 1396

200

r1 = 388 r1 = 365 r1 = 324
r2 = 613 r2 = 613 r2 = 613
r3 = 975 r3 = 1012 r3 = 1066

400

r1 = 240 r1 = 227 r1 = 202
r2 = 413 r2 = 413 r2 = 413
r3 = 671 r3 = 697 r3 = 736

600

r1 = 93 r1 = 87 r1 = 77
r2 = 213 r2 = 213 r2 = 213
r3 = 368 r3 = 383 r3 = 406

T=800

r1 = 1 r1 = 1 r1 = 1
r2 = 13 r2 = 13 r2 = 13
r3 = 64 r3 = 68 r3 = 71
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Fig. 9: 98% Bounds and Median of RUL (CoV = 0.05).

r3, in seconds) are tabulated in Table II, and graphically shown

in Figs. (9) through (11).

It is seen from the results that the uncertainty in the RUL

is high initially, and then gradually decreases until failure is

imminent. Initially, the uncertainty in RUL is high because

it is necessary to predict at a farther time instant; future

loading, and the associated uncertainty, need to be considered

for a longer period of time. However, at a latter time instant,

future loading needs to be assumed for a reduced period

of time, and hence the uncertainty in the RUL decreases.

In fact, any good prognostic algorithm should depict this

behavior, i.e., the prediction of RUL at a later time instant

must have lower uncertainty than the prediction at an earlier

time instant. Further, the larger the coefficient of variation in

the assumed state estimates, the larger the uncertainty in RUL;

this behavior is observed at every time instant, and is consistent

with intuition because a larger uncertainty in the state estimate

implies that the corresponding RUL prediction uncertainty will

also be high.

E. Verification using Monte Carlo Sampling

To verify the above performed uncertainty quantification,

Monte Carlo sampling (MCS) was performed using 1000

samples. It is computationally infeasible to perform MCS at

every time instant considered. Therefore, MCS is performed

for five time instants, starting from tP = 0 seconds un-

til tP = 800 seconds, in steps of 200 seconds. At each
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Fig. 10: 98% Bounds and Median of RUL (CoV = 0.10).
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Fig. 11: 98% Bounds and Median of RUL (CoV = 0.15).

time instant, the CDF of the RUL was computed by re-

peating the inverse-FORM for 13 different λ values (λ =
0.01, 0.05, 0.1, 0.2, ...0.8, 0.9, 0.95, 0.99). The comparison of

inverse-FORM and MCS at tP = 0 is shown in Fig. (12); in

this illustration, the CoV of the state estimates was chosen to

be equal to 0.05. Note that the uncertainty bounds due to the

use of a limited number of samples for MCS are also shown.

The probability distribution resulting from inverse-FORM

lies within the Monte Carlo bounds, as seen in Fig. (12), thus

verifying the uncertainty quantification procedure. In fact, the

maximum difference between the inverse-FORM solution and

the Monte Carlo solution was found to be less than 0.5%

(it must be noted that the Monte Carlo solution is not exact

due to the use of limited samples, and hence the 90% Monte

Carlo bounds have also been provided in Fig. (12)). Further,

the inverse-FORM procedure needed only 13 × 4 × 7 = 364
prognostic evaluations, because 13 λ values and 7 variables (3

state quantities, 3 process noise terms, and one loading term,

to represent uncertain quantities) were used, and 4 iterations

were needed for convergence whenever the iterative inverse-

FORM algorithm was used. In contrast, 1000 prognostic

evaluations were used in MCS. Further, a similar comparison

was performed at different time steps, and by considering other

CoV values. For instance, the comparison of the results from

MCS and inverse-FORM at tP = 400 s for CoV = 0.15 is

shown in Fig. (13).
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Fig. 12: Inverse-FORM vs. MCS (tP = 0, CoV = 0.05).
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Fig. 13: Inverse-FORM vs. MCS (tP = 400, CoV = 0.15).

The agreement of inverse-FORM with MCS is also evi-

dent in Fig. (13). In fact, it was observed that the inverse-

FORM method performs well in comparison with Monte

Carlo sampling, both in terms of accuracy (the maximum

difference was found to be less than 1%), and computational

cost (approximately one-third of the cost for MCS).

F. Effect of Assuming the Mean of State Variables

Because the focus of this paper is on prognosis, it was

stated earlier that the estimation of states is not explicitly

carried out in this paper, and therefore the mean of the

state values were assumed to be available as a function

of time. It is important to note that these assumed values

impact the final PDF of the RUL. Further, the estimated state

values may not be monotonic, smooth functions as seen in

Figs. (5) through (7). To demonstrate the effect of realistic state

estimation results, the noisy (simulated) state values shown in

Figs. (14) through (16) are assumed to be the mean of the

states, and prognosis calculations are repeated to obtain the

CDF of the RUL. For the sake of illustration, the CoV for

the states is assumed to be 5%, and the results of uncertainty

quantification are shown in Fig. (17). The statistics for process

noise and loading uncertainty are assumed to be the same as

before.

Similar to the previous studies, the results of uncertainty

quantification were verified at multiple time instants, by
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Fig. 15: State No. 2: Charge in Csp.

comparing the results from the inverse-FORM approach and

the Monte Carlo solution. The solution through the former

approach was found to be within 1% of the solution using the

latter approach.

IX. CONCLUSIONS

This paper investigated the use of the first-order reliability

methods (FORM) to compute the uncertainty in the remaining

useful life prediction of components used in engineering
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Fig. 16: State No. 3: Charge in Cs.
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Fig. 17: 98% Bounds and Median of RUL (CoV = 0.05).

systems. The computation of remaining useful life is important

in the context of component-level and system-level prognosis,

and hence directly used in online operations and decision-

making. Conventionally, sampling-based algorithms have been

used for quantifying the uncertainty in prognostic calculations,

and may require several thousands of system evaluations

to quantify the uncertainty in remaining useful life (RUL)

with reasonable accuracy. On the contrary, the FORM-based

approaches are analytical, compute the uncertainty using a

few system evaluations, and therefore are suitable for online

prognosis. Further, FORM-based methods are invariant on

repetition (as against sampling methods like Monte Carlo),

and hence may be preferred for system certification purposes.

While FORM-based approaches have been commonly used

in the reliability analysis of structural systems, this paper

applied these methods to predict the remaining useful life

of engineering components and systems using state-space

models. We discussed three FORM-based methods in detail:

the First-Order Second Moment method (FOSM), the First-

Order Reliability Method (FORM), and the Inverse First-Order

Reliability Method (inverse-FORM). While the FOSM method

can be used to approximate the first two moments of the RUL

prediction, the FORM and inverse-FORM approaches can be

used to calculate the entire probability distribution of the RUL.

In particular, the inverse-FORM method was preferred because

it can calculate those values of RUL that correspond to speci-

fied probability levels, which can be useful in online decision-

making. Further, several practical challenges involved in the

application of FORM-based methods to RUL prediction were

discussed, and new computational approaches were proposed

to overcome these challenges. Finally, a numerical example

was presented, and the uncertainty in remaining useful life

of a lithium-ion battery was quantified by accounting for the

different sources of uncertainty.

Future work needs to address several issues. First, practical

systems are commonly subjected to different types of variable

amplitude loading profiles such as block loading, random

processes (Gaussian processes, Markov processes, etc.), and

therefore, the proposed methods for uncertainty quantification

need to be extended to consider variable amplitude load-

ing. The assumption of constant amplitude loading implies
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that loading uncertainty is described using a single random

variable, whereas variable amplitude loading profiles need

to be described using multiple random variables, which not

only increases the dimensionality of the problem, but also

affects the uncertainty in the RUL prediction. Sometimes

the RUL distribution may become multi-modal, and first-

order reliability methods may not be able to capture such

probability distributions; this needs to be investigated in future

work. Second, the extension of the proposed equivalent time-

invariant distribution concept to variable amplitude loading

may be investigated for this purpose. Third, sensitivity analysis

needs to be performed so that the contributions of the different

sources of uncertainty to the overall uncertainty in RUL can

be quantified. Fourth, this paper did not consider the effect of

model form uncertainty on prognosis; future research needs

to quantify model form uncertainty, and develop a method

to rigorously account for model uncertainty in prognosis and

RUL calculations instead of simply lumping all the model

uncertainty into the process noise terms. Finally, it is also

necessary to quantify the robustness of the proposed approach,

by estimating the sensitivity of the RUL bounds to relaxing

the various assumptions in the present paper, and thereby

investigate the applicability of the methodology to practical

engineering systems.

ACKNOWLEDGMENT

The work reported herein was in part funded by the NASA

System-wide Satefy Assurance Technologies (SSAT) project

under the Aviation Safety (AvSafe) Program of the Aeronau-

tics Research Mission Directorate (ARMD), and by the NASA

Automated Cryogenic Loading Operations (ACLO) project

under the Office of the Chief Technologist (OCT) of Advanced

Exploration Systems (AES).

REFERENCES

[1] J. Luo, K. Pattipati, L. Qiao, and S. Chigusa, “Model-based prognostic
techniques applied to a suspension system,” Systems, Man and Cyber-

netics, Part A: Systems and Humans, IEEE Transactions on, vol. 38,
no. 5, pp. 1156–1168, 2008.

[2] K. Goebel, B. Saha, and A. Saxena, “A comparison of three data-
driven techniques for prognostics,” in 62nd Meeting of the Society For
Machinery Failure Prevention Technology (MFPT), 2008, pp. 119–131.

[3] M. Daigle, M. Foygel, and V. Smelyanskiy, “Model-based diagnostics
for propellant loading systems,” in Aerospace Conference, 2011 IEEE.
IEEE, 2011, pp. 1–11.

[4] M. Daigle and K. Goebel, “A model-based prognostics approach applied
to pneumatic valves,” International Journal of Prognostics and Health

Management, vol. 2, no. 2, 2011.
[5] M. Daigle, A. Bregon, and I. Roychoudhury, “A distributed approach to

system-level prognostics,” in Annual Conference of the Prognostics and

Health Management Society, sep 2012, pp. 71–82.
[6] S. Sankararaman and S. Mahadevan, “Uncertainty quantification in

structural damage diagnosis,” Structural Control and Health Monitoring,
vol. 18, no. 8, pp. 807–824, 2011.

[7] ——, “Bayesian methodology for diagnosis uncertainty quantification
and health monitoring,” Structural Control and Health Monitoring, vol.
In Press, 2011.

[8] B. Sun, S. Zeng, R. Kang, and M. G. Pecht, “Benefits and challenges of
system prognostics,” Reliability, IEEE Transactions on, vol. 61, no. 2,
pp. 323–335, 2012.

[9] P. Vaidya and M. Rausand, “Remaining useful life, technical health, and
life extension,” Proceedings of the Institution of Mechanical Engineers,
Part O: Journal of Risk and Reliability, vol. 225, no. 2, pp. 219–231,
2011.

[10] M. Wei, M. Chen, and D. Zhou, “Multi-sensor information based re-
maining useful life prediction with anticipated performance,” Reliability,

IEEE Transactions on, vol. 62, no. 1, pp. 183–198, 2013.

[11] N. Chen and K. L. Tsui, “Condition monitoring and remaining useful
life prediction using degradation signals: revisited,” IIE Transactions,
vol. 45, no. 9, pp. 939–952, 2013.

[12] X.-S. Si, W. Wang, C.-H. Hu, D.-H. Zhou, and M. G. Pecht, “Remain-
ing useful life estimation based on a nonlinear diffusion degradation
process,” Reliability, IEEE Transactions on, vol. 61, no. 1, pp. 50–67,
2012.

[13] K. Le Son, M. Fouladirad, A. Barros, E. Levrat, and B. Iung, “Remaining
useful life estimation based on stochastic deterioration models: A
comparative study,” Reliability Engineering & System Safety, 2012.

[14] M. Daigle, A. Saxena, and K. Goebel, “An efficient deterministic
approach to model-based prediction uncertainty estimation,” in Annual
Conference of the Prognostics and Health Management Society, sep
2012, pp. 326–335.

[15] C. Hu, B. D. Youn, P. Wang, and J. Taek Yoon, “Ensemble of data-
driven prognostic algorithms for robust prediction of remaining useful
life,” Reliability Engineering & System Safety, vol. 103, pp. 120–135,
2012.

[16] P. Baraldi, F. Mangili, and E. Zio, “Investigation of uncertainty treatment
capability of model-based and data-driven prognostic methods using
simulated data,” Reliability Engineering & System Safety, 2012.

[17] X.-S. Si, W. Wang, C.-H. Hu, and D.-H. Zhou, “Remaining useful life
estimation–a review on the statistical data driven approaches,” European

Journal of Operational Research, vol. 213, no. 1, pp. 1–14, 2011.

[18] K. Medjaher, D. A. Tobon-Mejia, and N. Zerhouni, “Remaining useful
life estimation of critical components with application to bearings,”
Reliability, IEEE Transactions on, vol. 61, no. 2, pp. 292–302, 2012.

[19] F. Zhao, Z. Tian, and Y. Zeng, “Uncertainty quantification in gear
remaining useful life prediction through an integrated prognostics
method,” Reliability, IEEE Transactions on, vol. 62, no. 1, pp. 146–
159, 2013.

[20] S. Sankararaman, M. Daigle, A. Saxena, and K. Goebel, “Analytical al-
gorithms to quantify the uncertainty in remaining useful life prediction,”
in Aerospace Conference, 2013 IEEE. IEEE, 2013, pp. 1–11.

[21] L. Tang, G. J. Kacprzynski, K. Goebel, and G. Vachtsevanos, “Method-
ologies for uncertainty management in prognostics,” in Aerospace con-
ference, 2009 IEEE. IEEE, 2009, pp. 1–12.

[22] C. R. Farrar, N. A. Lieven, and M. T. Bement, “An introduction
to damage prognosis,” Damage Prognosis: For Aerospace, Civil and

Mechanical Systems, pp. 1–12, 2005.

[23] D. J. Inman, C. R. Farrar, V. L. Junior, and V. S. Junior, Damage
prognosis for aerospace, civil and mechanical systems. Wiley, 2005.

[24] C. Farrar and N. Lieven, “Damage prognosis: the future of structural
health monitoring,” Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 365, no. 1851,
pp. 623–632, 2007.

[25] S. Sankararaman, Y. Ling, C. Shantz, and S. Mahadevan, “Uncertainty
quantification in fatigue damage prognosis,” in Annual Conference of

the Prognostics and Health Management Society, 2009.

[26] ——, “Uncertainty quantification in fatigue crack growth prognosis,”
International Journal of Prognostics and Health Management, vol. 2,
no. 1, 2011.

[27] J. Gu, D. Barker, and M. Pecht, “Uncertainty assessment of prognostics
of electronics subject to random vibration,” in AAAI fall symposium on

artificial intelligence for prognostics, 2007, pp. 50–57.

[28] J. A. DeCastro, “Exact nonlinear filtering and prediction in process
model-based prognostics,” in Annual Conference of the Prognostics and

Health Management Society, San Diego, CA., 2009.

[29] M. Orchard, G. Kacprzynski, K. Goebel, B. Saha, and G. Vachtsevanos,
“Advances in uncertainty representation and management for particle
filtering applied to prognostics,” in Prognostics and Health Management,

2008. PHM 2008. International Conference on, oct. 2008, pp. 1 –6.

[30] B. Saha, K. Goebel, S. Poll, and J. Christophersen, “Prognostics meth-
ods for battery health monitoring using a bayesian framework,” IEEE

Transactions on Instrumentation and Measurement, vol. 58, no. 2, pp.
291 –296, feb. 2009.

[31] B. Saha and K. Goebel, “Uncertainty management for diagnostics
and prognostics of batteries using bayesian techniques,” in Aerospace

Conference, 2008 IEEE, March 2008, pp. 1 –8.

[32] A. Usynin and J. W. Hines, “Uncertainty management in shock models
applied to prognostic problems,” in Artificial Intelligence For Prognos-

tics: Papers From The AAAI Fall Symposium, no. FS-07-02, 2007.



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON RELIABILITY 17

[33] H. Liao and Z. Tian, “A framework for predicting the remaining useful
life of a single unit under time-varying operating conditions,” IIE

Transactions, vol. 45, no. 9, pp. 964–980, 2013.
[34] X. Guan, Y. Liu, R. Jha, A. Saxena, J. Celaya, and K. Geobel, “Compar-

ison of two probabilistic fatigue damage assessment approaches using
prognostic performance metrics,” International Journal of Prognostics

and Health Management, vol. 1, p. 005, 2011.
[35] R. Rackwitz and B. Flessler, “Structural reliability under combined

random load sequences,” Computers & Structures, vol. 9, no. 5, pp.
489–494, 1978.

[36] T. W. Lee and B. M. Kwak, “A reliability-based optimal design using
advanced first order second moment method,” Journal of Structural

Mechanics, vol. 15, no. 4, pp. 523–542, 1987.
[37] A. Der Kiureghian, H.-Z. Lin, and S.-J. Hwang, “Second-order reliability

approximations,” Journal of Engineering Mechanics, vol. 113, no. 8, pp.
1208–1225, 1987.

[38] Y.-G. Zhao and T. Ono, “A general procedure for first/second-order
reliability method (form/sorm),” Structural Safety, vol. 21, no. 2, pp.
95–112, 1999.

[39] A. Haldar and S. Mahadevan, Probability, reliability, and statistical

methods in engineering design. John Wiley & Sons, Inc., 2000.
[40] G. Cederbaum, I. Elishakoff, and L. Librescu, “Reliability of laminated

plates via the first-order second-moment method,” Composite structures,
vol. 15, no. 2, pp. 161–167, 1990.

[41] M. Hohenbichler and R. Rackwitz, “First-order concepts in system
reliability,” Structural safety, vol. 1, no. 3, pp. 177–188, 1983.

[42] A. Der Kiureghian, Y. Zhang, and C. Li, “Inverse reliability problem,”
Journal of engineering mechanics, vol. 120, p. 1154, 1994.

[43] M. Daigle, B. Saha, and K. Goebel, “A comparison of filter-based
approaches for model-based prognostics,” in Aerospace Conference,

2012 IEEE. IEEE, 2012, pp. 1–10.
[44] M. Daigle and K. Goebel, “Model-based prognostics with

concurrent damage progression processes,” Systems, Man,

and Cybernetics: Systems, IEEE Transactions on, vol. PP,
doi=10.1109/TSMCA.2012.2207109, pp. 1–12, 2013.

[45] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear
estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, mar
2004.

[46] K. Dolinski, “First-order second-moment approximation in reliability of
structural systems: critical review and alternative approach,” Structural
Safety, vol. 1, no. 3, pp. 211–231, 1983.

[47] M. Hohenbichler, S. Gollwitzer, W. Kruse, and R. Rackwitz, “New light
on first-and second-order reliability methods,” Structural Safety, vol. 4,
no. 4, pp. 267–284, 1987.

[48] N. Sitar, J. D. Cawlfield, and A. Der Kiureghian, “First-order reliability
approach to stochastic analysis of subsurface flow and contaminant
transport,” Water Resources Research, vol. 23, no. 5, pp. 794–804, 1987.

[49] B. Fiessler, R. Rackwitz, and H. Neumann, “Quadratic limit states in
structural reliability,” Journal of the Engineering Mechanics Division,
vol. 105, no. 4, pp. 661–676, 1979.

[50] J. E. Angus, “The probability integral transform and related results,”
SIAM review, vol. 36, no. 4, pp. 652–654, 1994.

[51] X. Chen and N. Lind, “Fast probability integration by three-parameter
normal tail approximation,” Structural Safety, vol. 1, no. 4, pp. 269–276,
1983.

[52] S. Sankararaman and S. Mahadevan, “Likelihood-based representation
of epistemic uncertainty due to sparse point data and/or
interval data,” Reliability Engineering & System Safety,
vol. 96, no. 7, pp. 814 – 824, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0951832011000111

[53] B. Saha, C. C. Quach, and K. Goebel, “Optimizing battery life for
electric uavs using a bayesian framework,” in Aerospace Conference,

2012 IEEE. IEEE, 2012.
[54] M. Chen and G. A. Rincon-Mora, “Accurate electrical battery model

capable of predicting runtime and I-V performance,” IEEE Transactions
on Energy Conversion, vol. 21, no. 2, pp. 504 – 511, jun 2006.

BIOGRAPHIES

Shankar Sankararaman received his B.S. degree in Civil Engineering from
the Indian Institute of Technology, Madras in India in 2007; and later,
obtained his Ph.D. in Civil Engineering from Vanderbilt University, Nashville,

Tennessee, U.S.A. in 2012. His research focuses on the various aspects of
uncertainty quantification, integration, and management in different types of
aerospace, mechanical, and civil engineering systems. His research interests
include probabilistic methods, risk and reliability analysis, Bayesian networks,
system health monitoring, diagnosis and prognosis, decision-making under
uncertainty, treatment of epistemic uncertainty, and multidisciplinary analysis.
He is a member of the Non-Deterministic Approaches (NDA) technical
committee at the American Institute of Aeronautics (AIAA), the Probabilistic
Methods Technical Committee (PMC) at the American Society of Civil En-
gineers (ASCE), the Institute of Electrical and Electronics Engineers (IEEE),
and the Prognostics and Health Management (PHM) Society. Currently,
Shankar is a researcher at NASA Ames Research Center, Moffett Field, CA,
where he develops algorithms for uncertainty assessment and management in
the context of system health monitoring, prognostics, and decision-making.

Matthew Daigle received the B.S. degree in Computer Science, and Computer
and Systems Engineering from Rensselaer Polytechnic Institute, Troy, NY, in
2004; and the M.S., and Ph.D. degrees in Computer Science from Vanderbilt
University, Nashville, TN, in 2006, and 2008, respectively. From September
2004 to May 2008, he was a Graduate Research Assistant with the Institute for
Software Integrated Systems and Department of Electrical Engineering and
Computer Science, Vanderbilt University, Nashville, TN. During the summers
of 2006 and 2007, he was an intern with Mission Critical Technologies, Inc.,
at NASA Ames Research Center. From June 2008 to December 2011, he
was an Associate Scientist with the University of California, Santa Cruz,
at NASA Ames Research Center. Since January 2012, he has been with
NASA Ames Research Center as a Research Computer Scientist. His current
research interests include physics-based modeling, model-based diagnosis and
prognosis, simulation, and hybrid systems. Dr. Daigle is a member of the
Prognostics and Health Management Society and the IEEE.

Kai Goebel is the Deputy Area Lead for Discovery and Systems Health at
NASA Ames where he also directs the Prognostics Center of Excellence. After
receiving the Ph.D. from the University of California at Berkeley in 1996, Dr.
Goebel worked at General Electric’s Corporate Research Center in Niskayuna,
NY from 1997 to 2006 as a senior research scientist before joining NASA.
He has carried out applied research in the areas of artificial intelligence, soft
computing, and information fusion; and his interest lies in advancing these
techniques for real time monitoring, diagnostics, and prognostics. He holds
17 patents, and has published more than 250 papers in the area of systems
health management.

http://www.sciencedirect.com/science/article/pii/S0951832011000111

	I Introduction
	II Prognosis, and RUL Calculation
	II-A Architecture for Model-Based Prognostics
	II-A1 State Estimation
	II-A2 State Prediction
	II-A3 RUL Computation

	II-B RUL: A Dependent Quantity

	III Uncertainty in RUL
	IV First-Order Second Moment Method
	V First-Order Reliability Method
	V-A Normal Variables
	V-B Extension to Non-normal Variables

	VI Inverse First-Order Reliability Method
	VII Practical Challenges
	VIII Case Study: Lithium-Ion Battery
	VIII-A Description of the Model
	VIII-B Sources of Uncertainty
	VIII-C Verification of Equivalent Time-Invariant Process Noise
	VIII-D Uncertainty Quantification in RUL
	VIII-E Verification using Monte Carlo Sampling
	VIII-F Effect of Assuming the Mean of State Variables

	IX Conclusions
	References
	Biographies
	Shankar Sankararaman
	Matthew Daigle
	Kai Goebel


