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Abstract— This paper investigates the use of analytical algo-
rithms to quantify the uncertainty in the remaining useful life
(RUL) estimate of components used in aerospace applications.
The prediction of RUL is affected by several sources of un-
certainty and it is important to systematically quantify their
combined effect by computing the uncertainty in the RUL pre-
diction in order to aid risk assessment, risk mitigation, and
decision-making. While sampling-based algorithms have been
conventionally used for quantifying the uncertainty in RUL,
analytical algorithms are computationally cheaper and some-
times, are better suited for online decision-making. While exact
analytical algorithms are available only for certain special cases
(for e.g., linear models with Gaussian variables), effective ap-
proximations can be made using the first-order second moment
method (FOSM), the first-order reliability method (FORM), and
the inverse first-order reliability method (Inverse FORM). These
methods can be used not only to calculate the entire probability
distribution of RUL but also to obtain probability bounds on
RUL. This paper explains these three methods in detail and
illustrates them using the state-space model of a lithium-ion
battery.

TABLE OF CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 PROGNOSIS AND RUL CALCULATION . . . . . . . . . . 3

3 FIRST-ORDER SECOND MOMENT METHOD . . . . 4

4 FIRST-ORDER RELIABILITY METHOD . . . . . . . . . . 4

5 INVERSE FIRST-ORDER RELIABILITY METHOD 6

6 NUMERICAL EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . 7

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

BIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1. INTRODUCTION

The need for an accurate and efficient health management
system has become exceedingly important in safety-critical
and mission-critical aerospace systems. The most impor-
tant goal of health management is to constantly monitor
the performance of these aerospace systems, identify faults
(diagnosis), predict possible failures in the near future, and
quantify the remaining useful life (prognosis) in order to aid

978-1-4673-1813-6/13/$31.00 c©2013 IEEE.
1 IEEEAC Paper #2336, Version 1, Updated 01/3/2013.

online decision-making. Sometimes, it may be challenging
to perform health monitoring on the whole system due to
its sheer complexity, and therefore, diagnosis and prognosis
need to be performed on individual components that con-
stitute the overall system. In this approach, mathematical
models are developed for individual components, and then
the component models are integrated to form the overall
system. These component-level mathematical models can
be constructed either using laws of physics (physics-based
models [1]) or using data collected through component-level
testing (data driven models [2]), and are used for both system-
level diagnostics [3] and prognostics [4].

Uncertainty management is an important aspect of health
monitoring, due to the presence of several unknown factors
that affect the operations of the system of interest. Therefore,
it is not only important to develop robust algorithms for
diagnosis and prognosis, i.e., accurately perform diagnosis
and prognosis in the presence of uncertainty, but also im-
portant to quantify the amount of confidence in the results
of diagnosis and prognosis. This can be accomplished by
quantifying the uncertainty in fault diagnosis and prognosis
(future performance prediction and remaining useful life). It
is important to perform such uncertainty quantification (UQ)
online so as to enable in-flight decision-making capabilities.
Sankararaman and Mahadevan [5, 6] developed statistical
(both frequentist and Bayesian) approaches to quantify the
uncertainty in the three steps of diagnosis (detection, isola-
tion, estimation) in an online health monitoring framework.
There have also been a few papers [7–10] which discuss
uncertainty propagation in prognosis; however, many of these
papers are either suitable only for offline prognosis or they do
not provide a comprehensive treatment of uncertainty. For
example, the “Damage Prognosis Project” at Los Alamos
National Laboratory [9] dealt with prognosis mainly in the
context of offline testing and decision-making. Guan et
al. [11] investigated Bayesian and maximum relative entropy
methods for continuously updating the uncertainty in damage
assessment, in the context of offline prognosis. Often, all
the different sources of uncertainty - physical variability,
data uncertainty, and model uncertainty - are not rigorously
accounted for during prognosis; while most studies focus
only on parameter variability and loading variability, the other
sources of uncertainty are ignored. Sankararaman et al. [7]
explained and addressed this issue in detail by identifying
and accounting for the different types of uncertainty, the
methodology was still developed in the context of offline
testing. Therefore, there are several challenges relating to the
topic of prognostics uncertainty quantification, and it is clear
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that further research is necessary in this regard. The rest of the
paper focuses on this aspect, i.e., quantifying the uncertainty
in the reamining useful life (RUL) prediction.

This paper pursues a model-based framework for prognosis
and RUL calculation. Since state-space models are suitable
for representing time-dependent behavior, the governing dif-
ferential equations of the component of interest are trans-
formed into equivalent state space representations. There are
three major challenges before prognosis can be performed
and the RUL can be calculated.

1. State Uncertainty: The first challenge is to estimate the
current state of the system and the associated uncertainty.
Typically, this problem is formulated as an estimation prob-
lem or a state identification problem, and filtering techniques
such as particle filtering [12] are used. Though the true state
at any time instant is a deterministic quantity, i.e., it is not
precisely known and in most cases, impossible to estimate
with certainty due to (i) the presence of measurement errors
and sensor noise (data uncertainty) in the data collected for
estimation; (ii) uncertainty in the initial state; (iii) the noise
in the state space model used for estimation; and (iv) model
uncertainty. Filtering techniques such as particle filtering are
based on the Bayesian philosophy of uncertainty representa-
tion, according to which randomness can be perceived as lack
of information/precision [13], and can be used to represent
even an inherently deterministic quantity (which does not
exhibit natural variabililty but is not known precisely) using a
probability distribution.

2. Future Loading Uncertainty: In practical engineering
systems, it is almost impossible to accurately predict the
future loading and environmental conditions. Following the
Bayesian approach, future loading needs to be represented as
an uncertain quantity. An important challenge is to quantify
the amount of uncertainty in future loading. Though a
few publications have addressed this issue [14, 15], further
research is needed in this direction. However, the focus of
the present paper is not on uncertainty characterization, and
therefore it is assumed that future loading variability has been
characterized (e.g., based on already existing loading profiles
and data sets). After this uncertainty is characterized and
quantified, it needs to be included in prognosis to quantify
its effect on the uncertainty in RUL.

3. Process Noise: Process noise is an important component
of model uncertainty, and commonly represented as a random
variable which needs to be included while future predictions
are made and the RUL is estimated. Though the process noise
term can be estimated using the data collected during the
estimation stage, the future process noise may be significantly
different from the estimated noise, and cannot be known in
advance. However, it is still necessary to assume statistical
distributions for the process noise in the different states,
and include these distributions in the calculation of RUL
uncertainty.

The task of quantifying the uncertainty in the RUL prediction
is primarily an uncertainty propagation problem [16], i.e.,
the above discussed different types of uncertainty need to be
propagated through the state space model until the End of Life
(EOL). Sampling-based methods (adaptive sampling, Latin
hypercube sampling, Markov Chain Monte Carlo sampling,
etc.) can be easily used to quantify the uncertainty in RUL,
but they have two major disadvantages:

1. Several thousands of samples and hence, several thou-
sands of prognostic evaluations may be necessary to accu-
rately quantify the entire probability distribution of RUL,
which may not be computationally feasible for online health
monitoring. Theoretically, an infinite number of samples is
necessary to accurately calculate the probability distribution
of RUL. An increasingly smaller set of samples result in
increasingly worse representation of the distribution.

2. The method of drawing random samples may not be
preferred if repeatability is a desired criterion (for example,
for online decision-making or also for certification of algo-
rithms). In other words, the PDF of RUL depends on the
exact set of considered samples; if the calculation is repeated
with a different set of samples (which is likely the case if
purely random samples are drawn), then a different (albeit
only slightly, if the number of samples is large) probability
distribution may be obtained. This difficulty can be overcome
by predetermining the percentile values which can in turn be
used to draw samples. In this case, it may be possible to
preserve a particular statistic of the probability distribution,
but it may be difficult to accurately obtain the entire probabil-
ity distribution. For example, using the unscented transform
sampling approach proposed by Daigle et al. [17], the mean
and the variance of RUL can be efficiently calculated using
a few samples. While it is important to calculate the first
two moments of RUL, it is equally important to estimate the
tail probabilities of the distribution of RUL, because failure
is often caused due to events related to the tails of probability
distributions. In other words, in a well-designed system, the
probability of failure is very small (usually of the order of
10−3 or less), and in order to compute the value of RUL
which corresponds to such low probabilities, it is important
to accurately estimate the tail of the probability distribution
of RUL.

This paper investigates the use of analytical algorithms for
calculating the uncertainty in RUL, as an alternative to
sampling-based methods. Several analytical algorithms such
as the first-order second moment method (FOSM), first-order
reliability method (FORM), second-order reliability method
(SORM), etc. have been used to calculate the reliability of
structural systems, and they can also be used for uncertainty
propagation. This paper investigates the use of the FOSM
and FORM methods using state space models, and extends
them to calculate the uncertainty in RUL prediction. These
methods not only require very few prognostic evaluations in
comparison with the sampling-based approaches but can also
produce repeatable calculations, i.e., the exact same PDF on
every repetition of the algorithm. While the former directly
aids in online prognosis since fewer evaluations would lead to
quicker calculations, it is worth noting that the latter feature is
an important criterion for existing verification, validation, and
certification protocols in the aerospace domain. Therefore,
investigating such analytical algorithms allows us to move a
step closer towards adopting prediction algorithms (which are
inherently stochastic), by meeting the needs of the current
certification process.

The rest of the paper is organized as follows. Section 2
explains the state space model formulation and describes how
the estimation of uncertainty in RUL can be viewed as an
uncertainty propagation problem. Sections 3 5 present the
different analytical methods for quantifying the uncertainty
in the RUL prediction. Finally, the methods are illustrated
using the state space model of a lithium-ion battery model in
Section 6, and Section 7 concludes the paper.
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2. PROGNOSIS AND RUL CALCULATION

The section formulates the prognosis problem, and explains
the calculation of Remaining Useful Life [4]. The various
sources of uncertainty are explained, and finally, it is il-
lustrated how the calculation of uncertainty in RUL can be
treated as an uncertainty propagation problem.

To begin with, consider the state space model which is used
to continuously predict the state of the system, and therefore,
aid in prognosis. Consider a generalized state space model
as:

ẋ(t) = f(t,x(t), θ(t),u(t),v(t)) (1)

where x(t) ∈ R
nx is the state vector, θ(t) ∈ R

nθ is the
parameter vector, u(t) ∈ R

nu is the input vector, v(t) ∈ R
nv

is the process noise vector, f is the state equation. Typically,
all of these quantities are uncertain in reality.

The state vector at time t, i.e., x(t) (and the parameters
θ(t), if they are unknown) is (are) typically estimated using
filtering approaches until the time t when data is available.
Let y(t) ∈ R

ny , n(t) ∈ R
nn , and h denote the output vector,

measurement noise vector, and output equation respectively.
Then,

y(t) = h(t,x(t), θ(t),u(t),n(t)) (2)

Note that the output equation or data is not used in the
prognosis stage, since the focus is on predicting the future
and the associated uncertainty.

Prognostics and RUL prediction are concerned with the per-
formance of the component that lies outside a given region
of acceptable behavior. The desired performance is ex-
pressed through a set of nc constraints, CEOL = {ci}nc

i=1,
where ci : R

nx × R
nθ × R

nu → B maps a given point
in the joint state-parameter space given the current inputs,

(x(t), θ(t),u(t)), to the Boolean domain B , [0, 1], where
ci(x(t), θ(t),u(t)) = 1 if the constraint is satisfied, and 0
otherwise.

These individual constraints may be combined into a single
threshold function TEOL : Rnx × R

nθ × R
nu → B, defined

as:

TEOL(x(t), θ(t),u(t)) =

{

1, 0 ∈ {ci(x(t), θ(t),u(t))}
nc
i=1

0, otherwise.
(3)

TEOL is equal to 1 when any of the constraints are violated.
Then, the End of Life (EOL, denoted byE) at any time instant
tP is then defined as the earliest time point at which this
occurs:

E(tP ) , inf{t ∈ R : t ≥ tP ∧ TEOL(x(t), θ(t),u(t)) = 1} (4)

The Remaining Useful Life (RUL, denoted by R) at time
instant tP is expressed as:

R(tP ) , E(tP )− tP . (5)

Thus, it is clear that RUL predicted at time tP , i.e., R(tP )
depends on

1. Present time (tP )
2. Present state estimate (x(tP )); using the present state
estimate and the state space equations in Eq. 1, the future
states (x(tP ), x(tP + 1), x(tP + 2), ..., x(tP +R(tP ))) can
be calculated.

3. Future loading (u(tP ), u(tP + 1), u(tP + 2), ..., u(tP +
R(tP ))); these values are needed to calculate the future
state values using the state space equations. In this paper,
constant amplitude loading is considered, and the amplitude
is assumed to follow a particular probability distribution.
Future work will consider variable amplitude loading.
4. Parameters (θ(tP : tP +R(tP ))); the values of parameters
are also needed to calculate the future states. If measurement
data are available, then the parameters can be estimated along
with the states using filtering techniques. However, this paper
addresses only the prognosis problem (future prediction), and
it is assumed that measurement data is not available after time
tP . Therefore, the parameters θ(tP : tP +R(tP )) need to be
assumed in order to calculate future states and estimate the
RUL prediction. In this paper, for the sake of illustration,
the parameters are assumed to be constants (over time) and
precisely known.
5. Process noise (v(tP ), v(tP + 1), v(tP + 2), ..., v(tP +
R(tP ))).

The focus of this paper is to quantify the uncertainty in RUL
as a result of the uncertainties in these quantities. Note
that the dependence of R(tP ) on other uncertain quantities
is implicit, i.e., the RUL depends on the process noise and
loading, and in turn, how long the process noise and the fu-
ture loading need to be considered during prognosis directly
depends on the RUL itself. Therefore, it is challenging to
employ the analytical methods for uncertainty propagation,
since an explicit function, which establishes a one-to-one
relationship from the various sources of uncertainty to the
RUL, is necessary. The constant value of the input loading
amplitude is denoted by uE , and can be easily included as
an input to this explicit function. However, the inclusion of
process noise is not straightforward because it is necessary
to include the process noise at all time instants as inputs;
this increases the dimensionality of the problem several fold.
Further, in some cases where the sensitivity of the uncertainty
in RUL to the uncertainty in the process noise is negligible,
it is meaningful to ignore the contribution of process noise
uncertainty. Therefore, process noise is not considered in the
present paper and the one-to-one function can be written as:

R(tP ) = G
(

x(tP ),u
E
)

(6)

Given a realization of x(tP ) and uE , the above equation
is continuously evaluated using the state space model in
Eq. 1, and R(tP ) is computed when end of life is reached.
In a sampling-based procedure, this is repeated for several

thousands of samples of x(tP ) and uE , the corresponding
realization of R(tP ) are calculated to obtain a histogram,
which can be used to construct the probability density func-
tion (PDF) of R(tP ). As stated earlier, such sampling-based
approaches may be computationally expensive, and this paper
investigates computationally efficient, analytical alternatives
to construct the PDF. In general, there may be other sources
of uncertainty (e.g., parameter uncertainty), and hence, the
above function G may have several inputs. The following
sections discuss the analytical methods for a generic number
of inputs, as:

R = G(X) (7)

where X is a vector X = {X1, X2, ...Xi, ...Xn}, where n
is the length of the vector X , and therefore the number
of uncertain “inputs” to G. For example, if there are two
states (their values at time tP are uncertain) and one loading
amplitude (that is uncertain), then n = 3. Each Xi has its
own probability distribution and it is desired to calculate the
probability distribution of R. If these probability distributions
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are Gaussian and if G is a linear function, then uncertainty
propagation throughG is simple and closed-form expressions
are available to estimate the statistics of R. In general,
the state-space equation, i.e., Eq. 1, and therefore, damage
progression equations are non-linear; further, the threshold
function in Eq. 3 may also be non-linear. Therefore, G is
non-linear in several practical cases, and thus the uncertainty
quantification methodology must be applicable to the general
case, i.e, non-linearity in G and non-normality in X .

3. FIRST-ORDER SECOND MOMENT METHOD

The first-order second moment approach, as the name sug-
gests, is a simple approximation of R using First-order Taylor
series expansion. The first two moments, i.e. mean (µX)
and variance (σX ) of X are used to approximate the first
two moments of R. Consider the first-order Taylor series
expansion of Y = G(X) around µX , as:

R = G(µX) +

i=n
∑

i=1

(Xi − µXi
)

(

∂R

∂Xi

)

µX

(8)

Note that R is a linear function of X with the partial deriva-
tives as coefficients, and therefore, it is straightforward to
approximate the mean and variance of R, as:

µR = G(µX ) (9)

σ2
R =

i=n
∑

i=1

j=n
∑

j=1

(

∂R

∂Xi

)

µX

(

∂R

∂Xj

)

µX

Cov(Xi, Xj) (10)

When the inputs to G are uncorrelated, then the expression
for variance in Eq. 10 simplifies to:

σ2
R =

i=n
∑

i=1

(

∂R

∂Xi

)2

µX

σ2
Xi

(11)

Note that the first-order second moment approach can only
compute the mean and variance of the remaining useful life
(R) prediction. It is not directly useful in estimating the
type of probability distribution of R, and therefore cannot be
used to calculate tail probabilities. However, if each of the
inputs Xi were to be normally distributed (and independent
of each other), then it can be easily proved that their linear
combination is also a normally distributed variable [18]. This
observation is used to develop a general methodology to
calculate the entire CDF of the Remaining Useful Life (R)
prediction in the following stages:

1. FORM for Normal Variables: First, consider the case
when the variables are normal. Even in this case, the above
method is suitable only when G is linear. When G is non-
linear, it is not appropriate to always calculate the gradient
at the mean µX . This leads to obvious question — “where
to linearize”? The “location of linearization” is chosen
analytically, and then used to calculate the CDF of RUL at
a particular R = r, i.e., FR(R = r) = P (R ≤ r). Note
that an upper case letter refers to the name of a random
variable whereas the corresponding lower case letter refers
to its realization. It will be illustrated that the location (point)
of linearization varies with the choice of r. By repeating the
entire process for different choices of r, the entire CDF can be
calculated. This method, known as the first-order reliability
method (FORM), is discussed in the first part of Section 4.

2. FORM for Non-Normal Variables: The above FORM
method for normal variables is extended to non-normal vari-
ables in the latter part of Section 4.
3. Inverse FORM: While Section 4 deals with calculating
the CDF value for a given realization of R, Section 5 con-
siders the inverse problem, i.e. calculating the realization
of R that corresponds to a given CDF value. This method,
popularly known as the Inverse CDF approach, can be used
to calculate probability bounds on the remaining useful life
prediction, which is useful for decision-making.

4. FIRST-ORDER RELIABILITY METHOD

The first-order reliability method (FORM) was originally
developed by structural engineers in order to estimate the
reliability of structural systems. The contribution of this
paper is to extend this method to state space models and
health monitoring with the goal of computing the probability
distribution of Remaining Useful Life. Though the estimation
of reliability and the calculation of CDF are statistically
equivalent, the FORM method is described from a purely
uncertainty propagation perspective, without reference to re-
liability calculation.

Consider Eq. 7, which expresses the RUL as a function of the
various sources of uncertainty. The first subsection explains
the FORM method when X consists of normally distributed
variables and the next subsection extends the method to the
non-normal case.

Normal Variables

The goal of the FORM approach is to calculate the CDF
value, i.e. FR(r) = P (R ≤ r), given r which is a realization
of the random variable R. In this subsection, assume that the
ith input Xi is normally distributed as N(µXi

, σXi
).

FORM achieves the aforementioned goal by approximating
the non-linear equation R = G(X) using a linear equation in
order to easily compute the CDF of R. The linear equation
is constructed using a Taylor series approximation around the
so-called “point of linearization”. The difference in FORM
(with respect to FOSM) is that the point of linearization varies
from one choice of r to another. The identification of the
point of linearization is the most important component of the
FORM algorithm.

In order to calculate FR(r) = P (R ≤ r), consider the
contours of the function R − r = G(X)− r; in particular
consider the curve described by G(x) − r = 0, where x

is a realization of X . This curve differentiates the multidi-
mensional space into two regions: one region where R < r,
and another region where R > r, as shown in Fig. 1. (This
curve of demarcation is popularly called as the limit state in
reliability analysis. The equation corresponding to the limit
state divides the space into two zones - zone of failure and
zone of safety, respectively. This terminology is not used
in this paper because FORM is now used for uncertainty
propagation rather than reliability calculation.)

Any point lying on the curve of demarcation would satisfy
the equation R = G(X). Since (1) this curve serves as the
demarcation between the two zones given by R > r and
R < r; and (2) it is of interest to calculate the probability
P (R ≤ r), it is intuitive that it is important to identify a linear
function which closely resembles the contour G(x)− r = 0.
Hence, the point of linearization must lie on this curve of
demarcation; in other words, the point of linearization must
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G(X)− r = 0

MPP

u1

u2

β

Standard
Normal
Space Region 1

Region 2

G(X) < r

G(X) > r

Linear
Approximation

Figure 1: Estimating MPP in FORM

satisfy the equation G(x) − r = 0. This is clearly different
from the FOSM approach, where the mean µX was chosen
as the point of linearization; for an arbitrary choice of r, it is
obvious that the mean µX will not satisfy this equation.

Therefore, the point of linearization should be located on the
curve of demarcation. However, there are infinite points that
satisfy this criterion, and it is important to select the appro-
priate one. Each of these infinite points has a likelihood of
occurrence, and intuitively, the point of maximum likelihood
is chosen as the point of linearization. This likelihood can
be calculated using the probability density function of the
underlying random variables. For a single normal random
variable X with mean µ and standard deviation σ, the PDF is
given by:

fX(x|µ, σ) = 1

σ
√
2π

exp

[

− (x − µ)2

2σ2

]

. (12)

For example, when µ = 10 and σ = 1, x = 10 is 1.65 times
more likely to occur than x = 9. The maximum value of the
likelihood function occurs at x = µ; therefore, the farther x is
away from the mean µ, the lower the likelihood of occurrence
of x. As explained earlier, the mean cannot be chosen as the
point of linearization since G(µ)− r 6= 0. Therefore, if there
is a single input variable, the point of linearization is chosen
in such a way that it satisfies the equation G(x) − r = 0 and
the value of ||x− µ|| is minimum.

However, in a general uncertainty propagation problem, the
input to G is a vector, i.e., X = {X1, X2, ...Xi, ...Xn}, and
each Xi has its own mean µXi

and standard deviation σXi
.

The objective is to identify the point of maximum likelihood,
which can be calculated by maximizing the joint probability
density function of all the input random variables. If the
variables are independent, then the joint density function of
X is expressed as:

fX(x) =
i=n
∏

i=1

1

σi

√
2π

exp

[

− (xi − µi)
2

2σ2
i

]

. (13)

It can be verified (by taking the logarithm) that the maximizer
of the above function simultaneously minimizes

β =

i=n
∑

i=1

(xi − µi

σi

)2

. (14)

Eq. 14 can rewritten as:

β =

i=n
∑

i=1

u2
i , (15)

where

ui =
xi − µi

σi

. (16)

If the above computation were performed for every realiza-
tion xi of the random variable Xi, then the corresponding
uis would be realizations of the standard normal variable
Ui, i.e., Ui ∼ N(0, 1). Therefore, Eq. 16 is referred to as
the standard normal transformation. In the space of standard
normal variables, maximizing the likelihood of occurrence is
equivalent to minimizing Eq. 15, which implies that the point
of linearization is that point on the curve of demarcation,
whose distance (measured in the standard normal space) from
the origin is minimum. Since the point of linearization has the
maximum likelihood of occurrence, it is popularly known as
the Maximum Probable Point (MPP), as indicated in Fig. 1.
The Maximum Probable Point, therefore, represents the min-
imum distance (measured from the origin, in the standard
normal space), and this minimum distance is of significance,
because it can be proved that:

P (R ≤ r) = Φ(−β) (17)

where Φ(.) represents the standard normal cumulative dis-
tribution function. In order to prove Eq. 17, consider the
first order Taylor’s series expansion of Z = G(X) − r by
linearizing around the MPP. Then, Z is approximated to be a
normal random variable; its CDF value measured at Z = 0 is
exactly equal to P (R ≤ r), and is calculated as:

P (Z ≤ 0) = P (R ≤ r) = Φ(−µZ

σZ

) (18)

Using the Taylor series expansion in Eq. 8, it can be proved
that [18]:

β =

i=n
∑

i=1

u2
i =

µZ

σZ

(19)

Therefore, the problem of calculating the CDF reduces to
identifying the MPP on the curve of demarcation. This can
be posed as a constrained optimization problem, as follows:

Minimize
u

u
T
u

s.t. G(x) = r
u = {u1, u2...ui, ...un}

ui = (xi − µi)/σi

(i = 1 to n)

(20)

The above optimization problem can be solved using the
Rackwitz-Fiessler [19] algorithm, an iterative procedure, as
follows:

1. Initialize counter j = 0 and start with an ini-
tial guess for the Most probable point (MPP), i.e.,

x
j = {xj

1, x
j
2, ... x

j
i , ...x

j
n}, a column vector.

2. Transform into standard normal space and calculate

u
j = {uj

1, u
j
2, ... u

j
i , ...u

j
n} using Eq. 16, a column vector.

3. Compute the gradient vector in the standard normal space,
i.e., α = {α1, α2, ...αn}, another column vector where

αi =
∂g

∂ui

=
∂g

∂xi

× ∂xi

∂ui

=
∂g

∂xi

× σi (21)
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4. In the iterative procedure, the next point uj+1 is calculated
using a Newton-Raphson type equation, as:

u
j+1 =

1

||α|| [α
T
u
j −G(xj)]

α

||α|| (22)

5. Transform back into original space, i.e., compute x
j+1,

and continue starting from Step 3 until the iterative procedure
converges. Using tolerance limits δ1 and δ2, convergence
can be checked verified if the following two criteria are
satisfied: (i) the point lies on the curve of demarcation,

i.e., |G(xj)− r| ≤ δ1; and (2) the solution does not change

between two iterations, i.e., |xj+1 − x
j| ≤ δ2.

The above described iterative procedure usually converges
within 4 or 5 iterations. In each iteration, the transformation
to the standard normal space is straightforward only when the
variables are originally normal. Therefore, the method needs
to be modified to include non-normal variables, as explained
in the next subsection.

Extension to Non-normal Variables

Now consider the case where the inputs Xi (i = 1 to n)
have arbitrary probability distributions given by their CDFs as
FXi

(xi)(i = 1 to n). Now that Xi is not normally distributed,
Eq. 16 cannot be used for standard normal transformation.
Therefore, it is necessary to calculate ui from a given xi

meaningfully, so that ui represents a realization of the stan-
dard normal variable. One simple transformation is based on
probability integral transform concept, as:

ui = Φ−1(FXi
(Xi = xi)) (23)

where Φ−1(.) refers to the inverse of the standard normal
distribution function [18].

In addition to the above procedure, there are also other
transformation techniques. For example, a two-parameter
transformation procedure estimates the mean µi and standard
deviation σi of the normal distribution by equating the CDF
and PDF values of the distribution of X and the normal distri-
bution. Then, Eq. 16 can be used to calculate ui from xi. Note
that the mean µi and standard deviation σi are dependent on
the value of xi. Similarly, Chen and Lind [20] proposed a
three-parameter transformation procedure by introducing a
third parameter, a scale factor which is estimated by matching
the slope of the probability density function in addition to the
PDF and CDF values. Further, when the inputs are corre-
lated or statistically dependent, it is necessary to transform
them to uncorrelated standard normal space. Haldar and
Mahadevan [18] describe methods for such transformation. It
must be noted that any transformation must be accompanied
by suitably computing the derivatives in the standard normal
space, and Eq. 21 must be appropriately replaced.

Note that above FORM procedure calculates the CDF value
at a particular value of RUL. It answers the question: What is
the probability that the RUL is smaller than a given number?
This question is answered using a search procedure which
computes the CDF value corresponding to a given RUL
value, and this search is accomplished through an iterative
procedure, like in an optimization algorithm. In order to
obtain the entire CDF, the whole procedure is repeated with
multiple values of RUL. Sometimes, it may not be possible
to identify values of RUL in order to calculate the entire CDF
because the spread of the distribution may not be known in
advance. So, the next section discusses the Inverse FORM

procedure, which answers the question: What is the value of
RUL which corresponds to a given probability level? In other
words, what is the α-percentile (e.g., 5%, 95%, etc.) value of
RUL? By repeating this procedure for one lower percentile
and one upper percentile value, the probability bounds on
RUL can be calculated.

5. INVERSE FIRST-ORDER RELIABILITY

METHOD

Given β or λ = Φ(−β), the inverse FORM approach can be
used to calculate r such that FR(r) = P (R ≤ r) = λ. The
theory behind inverse FORM is exactly the same as FORM,
and the algorithm discussed in Section 4 is modified so that
the CDF value can be specified and r can be calculated. The
various steps involved in the iterative procedure for Inverse
FORM are outlined below:

1. Initialize counter j = 0 and start with an ini-
tial guess for the Most probable point (MPP), i.e.,

x
j = {xj

1, x
j
2, ... x

j
i , ...x

j
n}.

2. Transform into standard normal space and calculate

u
j = {uj

1, u
j
2, ... u

j
i , ...u

j
n}.

3. Compute the gradient vector in the standard normal space,
i.e., α = {α1, α2, ...αn}, as explained in Section 4.

4. In the iterative procedure, the next point uj+1 is calculated
as:

u
j+1 = − α

|α|β (24)

5. Transform back into original space, i.e., compute x
j+1,

and continue starting from Step 3 until the iterative procedure
converges. Using tolerance limits δ1 and δ2, convergence
can be checked verified if the following two criteria are
satisfied: (i) the point lies on the curve of demarcation,

i.e., |G(xj)− r| ≤ δ1; and (2) the solution does not change

between two iterations, i.e., |xj+1 − x
j| ≤ δ2.

Similar to the Rackwitz-Fiessler algorithm, the above itera-
tive procedure usually convergences within 4 or 5 iterations,
and therefore is suitable for quick calculations.

As stated earlier, the Inverse FORM procedure is useful
to calculate probability bounds. For example, by repeat-
ing the above algorithm for λ = 0.05 and λ = 0.95,
it is possible to estimate the 90% probability bounds on
the remaining useful life. In fact, the entire CDF can be
constructed by repeating the analysis for several values of λ
(0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95).

The advantage of Inverse FORM is that the number of prog-
nostic evaluations is extremely small compared to sampling-
based approaches. For the sake of illustration, consider that
the above iterative algorithm converges in 5 iterations. Each
iteration requires the computation of the gradient vector; if
there are k inputs, then k + 1 computations are necessary
for each evaluation - one for each derivative and one for
the evaluation of G. Hence, the total number of prognostic
evaluations is equal to 5(k+1). If the analysis is repeated for
2 values of λ (in order to compute the probability bounds on
RUL), then it takes 10(k + 1) prognostic evaluations, which
is more computationally efficient than sampling-based tech-
niques, and, therefore suitable for online decision-making.
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6. NUMERICAL EXAMPLE

The proposed methods are illustrated using a state space
model of a lithium-ion battery, which is an important compo-
nent in aerospace applications and which is also being studied
at NASA Ames Research Center as part of the rover test-
bed [21]. Though the method is illustrated using a battery
model, it is general and can be applicable to state space
models in several engineering domains.

Description of the Model

This battery model, earlier used by Daigle et al. [17] for
prognosis, is similar to the models presented by Chen and
Rincon-Mora [22]. The model is based on an electrical circuit
equivalent as shown in Fig. 2, where the large capacitance
Cb holds the charge qb of the battery. The RCP -CCP pair
captures the major nonlinear voltage drop due to concentra-
tion polarization, Rs captures the so-called I-R drop, and
Rp models the parasitic resistance that accounts for self-
discharge. This relatively simple battery model is sufficient
to capture the major dynamics of the battery, but ignores
temperature effects and other minor battery processes.

Figure 2: Battery equivalent circuit

The state-of-charge, SOC, is computed as

SOC = 1− qmax − qb
Cmax

(25)

where qb is the current charge in the battery (related to
Cb), qmax is the maximum possible charge, and Cmax is
the maximum possible battery capacity (i.e., nominally, its
rated capacity). The concentration polarization resistance is a
nonlinear function of SOC:

RCP = RCP0 +RCP1 exp(RCP2(1 − SOC)) (26)

where RCP0, RCP1, and RCP1 are empirical parameters.
The resistance, and, hence, the voltage drop, increases ex-
ponentially as SOC decreases [14].

Voltage drops across the individual circuit elements are given
by

Vb = qb/Cb (27)

VCP = qCP /CCP (28)

Vp = Vb − VCP (29)

where qCP is the charge associated with the capacitance
CCP . The terminal voltage of the battery is

V = Vb − VCP −Rsi (30)

Parameter Value
Cb 9844
Rs 0.143014
Rp 500
CCP 70.3767
RCP0 0.019829
RCP1 3.68606 × 10−14

RCP2 31.9213
qmax 41400
Cmax 6900

Table 1: Battery Model Parameters

where i is the battery current at the terminals. Currents
associated with the individual circuit elements are given by

ip = Vp/Rp (31)

ib = ip + i (32)

iCP = ib − VCP /RCP (33)

The charges are then governed by

q̇b = −ib (34)

q̇CP = iCP (35)

It is of interest to predict the end-of-discharge as defined by
a voltage threshold VEOD . So, CEOL consists of only one
constraint:

c1 : V > VEOD (36)

The parameters of the battery model are assumed to be
deterministic and are shown in Table 1. All voltages are
measured in Volts, resistances are measured in Ohms, charges
are in the units of Coulombs, and capacitances are measured
in Coulombs per Volt.

The following sections deal with uncertainty quantification
and verification of the Inverse FORM approach.

Uncertainty Quantification in RUL

In this example, the process noise of the state space model
is assumed to be small as noted by Daigle et al. [17], and
therefore not included in the uncertainty quantification. The
two types of uncertainty considered are:

1. Loading Uncertainty: In this example, a constant am-
plitude loading is considered for the purpose of illustra-
tion. The amplitude is considered to be normally distributed
(N(1.375, 1/6)), and this distribution is truncated at a speci-
fied lower bound (0.75) and an upper bound (2.00).
2. State Uncertainty: Typically, the state estimation, which
is an inverse problem, is addressed using a filtering technique
which can continuously estimate the uncertainty in the state
when measurements are continuously available as a function
of time. In this paper, the state estimation is not explicitly
carried out. The state values are assumed to be available,
and the uncertainty in the states are predetermined based
on the authors’ past experiences with the use of filtering
techniques for the above described problem. There are two
state variables (charge in the battery and charge associated
with the capacitance) in this example and at any time instant,
they are assumed to be normally distributed with a specified
mean; for example, the mean of the initial states are set as
[4.14×104, 0]. For the purpose of illustration, three different
values of CoV (Coefficient of variation, defined as the ratio

7



CoV=1% CoV=2% CoV=3%

T=0
r1 = 4065 r1 = 3781 r1 = 3401
r2 = 5045 r2 = 5045 r2 = 5045
r3 = 6459 r3 = 6742 r3 = 7120

T=1000
r1 = 3216 r1 = 2908 r1 = 2515
r2 = 4045 r2 = 4045 r2 = 4045
r3 = 5226 r3 = 5532 r3 = 5924

T=2000
r1 = 2359 r1 = 2023 r1 = 1616
r2 = 3045 r2 = 3045 r2 = 3045
r3 = 4001 r3 = 4335 r3 = 4741

T=3000
r1 = 1488 r1 = 1118 r1 = 699
r2 = 2045 r2 = 2045 r2 = 2045
r3 = 2789 r3 = 3157 r3 = 3575

T=4000
r1 = 589 r1 = 186 r1 = 43
r2 = 1045 r2 = 1045 r2 = 1045
r3 = 1605 r3 = 2008 r3 = 2432

T=5000
r1 = 6 r1 = 1 r1 = 0
r2 = 45 r2 = 45 r2 = 45
r3 = 478 r3 = 897 r3 = 1316

Table 2: Results of Uncertainty Quantification in RUL
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Figure 3: 90% Bounds and Median of RUL (CoV = 1%)

between standard deviation and mean) are considered —
0.01, 0.02, 0.03 — and the analysis is repeated for each CoV
value.

In order to apply the proposed algorithm to this battery exam-
ple, the first step is to construct the “G” model as seen earlier
in Eq. 6. One realization of each source of uncertainty (two
variables corresponding to the two states in this example, and
one variable corresponding to the loading) becomes input
to this model, and the state space equations above are used
to calculate the remaining useful life prediction (right hand
side of Eq. 6). Then, the Inverse FORM method can be
directly used to compute the RUL value corresponding to
multiple CDF values; FR(r1) = 0.05, FR(r2) = 0.5, and
FR(r3) = 0.95 are used in this paper, and the calculations are
repeated for three considered CoV values for the uncertainty
in the state variables. While r1 and r3 correspond to the 90%
probability bounds of RUL, r2 corresponds the median of
RUL. The bounds and the mean are continuously calculated
until T = 5000 (in seconds) when failure seems to be immi-
nent, and the Inverse FORM calculation is performed every
100 s. The results are tabulated in Table 2 and graphically
shown in Fig. 3–5.

It is seen that from the results that the uncertainty in the RUL
is high initially, and then gradually decreases until failure is
imminent. Initially, the uncertainty in RUL is high because it
is necessary to predict at a further time instant, in comparison
with making prognostic predictions at a later stage. In fact,
any good prognostic algorithm should depict this behavior,
i.e., the prediction of RUL at a later time instant has lower
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Figure 4: 90% Bounds and Median of RUL (CoV = 2%)
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Figure 5: 90% Bounds and Median of RUL: (CoV = 3%)

uncertainty than the prediction at an earlier time instant.
Further, the larger the coefficient of variation, the larger the
uncertainty in RUL; this behavior is observed at every time
instant and is consistent with intuition because a larger un-
certainty in the state estimate implies that the corresponding
RUL prediction uncertainty will also be high. When failure
is imminent, the probability distribution of RUL is highly
positively skewed; in other words, the probability density
function has a very high likelihood for almost immediate
failure, but has a longer right-tail. The maximum likelihood
point corresponds to the time of imminent failure, while the
variance is reflective of the various sources of uncertainty.

Verification using Monte Carlo Sampling

In order to verify the above performed uncertainty quantifica-
tion, Monte Carlo sampling (MCS) is performed using 1000
samples. It is computationally infeasible to perform MCS at
every time instant considered. Therefore, MCS is performed
for six time instants, starting from T = 0 until T = 5000 in
steps of 1000 seconds. At each time instant, the CDF of RUL
was computed by repeating Inverse FORM for 13 different λ
values (λ = 0.01, 0.05, 0.1, 0.2, ...0.8, 0.9, 0.95, 0.99). The
comparison of Inverse FORM and MCS at T = 0 is shown
in Fig. 6; in this illustration, CoV of state estimates is chosen
to be 3%. Note that the uncertainty bounds due to the use of
limited number of samples for MCS are also shown.

It is seen that the probability distribution resulting from
Inverse FORM lies within the Monte Carlo bounds, as seen
in Fig. 6, thus verifying the uncertainty quantification proce-
dure. In fact, the maximum difference between the Inverse
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Figure 6: Inverse FORM vs. MCS (T = 0, CoV = 3%)

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

 

 

RUL

C
u
m

u
la

ti
v
e

D
is

tr
ib

u
ti

o
n

F
u
n
ct

io
n

MCS Lower Bound

MCS Upper Bound

MCS Estimate

Inverse FORM

Figure 7: Inverse FORM vs. MCS (T = 4000, CoV = 1%)

FORM solution and the Monte carlo solution was found to
be less than 0.5% (it must be noted that the Monte carlo
solution is not exact due to the use of limited samples and
hence, the 90% Monte Carlo bounds have also been provided
in Fig. 6). Further, the Inverse FORM procedure needed
only 13 × 4 × 3 = 156 prognostic evaluations, since 13 λ
values and 3 variables (to represent uncertain quantities) were
used, and 4 iterations were needed for convergence whenever
the iterative Inverse FORM algorithm was used. In contrast,
MCS required 1000 prognostic evaluations. Further, a similar
comparison was performed at different time steps, and by
considering other CoV values. For instance, the comparison
of the results from MCS and Inverse FORM at T = 4000 s
for CoV = 1% is shown in Fig. 7.

The agreement of Inverse FORM with MCS is evident in
Fig. 7. In fact, it was observed that the Inverse FORM method
performs well in comparison with Monte Carlo sampling,
both in terms of accuracy (the maximum difference was found
to be less than 1%) and computational cost (approximately
10% of the cost of MCS).

7. CONCLUSION

Conventionally, sampling-based algorithms have been used
for quantifying the uncertainty in prognostic calculations, and
may require several thousands of samples in order to quantify
the entire probability distribution of remaining useful life
(RUL) with reasonable accuracy. Further, if such an algo-
rithm were to be repeated, a probability distribution different

(albeit only slightly) from the original distribution may be ob-
tained, due to the use of limited samples. These two reasons
hinder the use of such algorithms in online prognostics and
decision-making. Therefore, this paper investigated the use
of analytical algorithms in order to quantify the uncertainty
in the RUL prediction.

The First-Order Second Moment method (FOSM), the First-
Order Reliability Method (FORM), and Inverse First-Order
Reliability Method (Inverse FORM) are optimization-based
analytical approaches, which were originally developed by
structural engineers in order to quantify the reliability of
structural systems. This paper extended these methods to
quantify the entire probability distribution of RUL using
state-space models that capture the evolution of the system
continuously as a function of time. While the FOSM method
can be used to obtain the first two moments of the RUL
prediction, the FORM and Inverse FORM approaches can
be used to calculate the entire CDF of the RUL. These
approaches are not only computationally cheaper, but can
produce repeatable results, and therefore, are suitable for
online prognosis and decision-making.

Future work needs to address several issues. First, the
process noise of the state space models need to be rigorously
accounted for in the uncertainty quantification procedure.
This is particularly important when the contribution of pro-
cess noise uncertainty to the overall uncertainty in RUL is
significantly large. Second, practical systems are commonly
subjected to different types of variable amplitude loading
profiles such as block loading, Markov processes, general
random processes, etc., and therefore, the proposed methods
for uncertainty quantification need to be extended to consider
variable amplitude loading. The assumption of constant am-
plitude loading implies that loading uncertainty is described
using a single random variable, whereas variable amplitude
loading profiles need to be described using multiple random
variables, which not only increases the dimensionality of
the problem, but also affects the uncertainty in the RUL
prediction. Future work must investigate the impact of in-
cluding variable amplitude loading on the uncertainty bounds
of the RUL prediction. Third, sensitivity analysis needs
to be performed so that the contributions of the different
sources of uncertainty to the overall uncertainty in RUL can
be quantified. Fourth, this paper did not consider the effect of
model form uncertainty on prognosis; future research needs
to quantify model form uncertainty and develop a method to
rigorously account for model uncertainty in prognosis and
RUL calculations. Finally, it is also necessary to quantify the
robustness of the proposed approach, by estimating the sensi-
tivity of the RUL bounds to relaxing the various assumptions
in the present paper, and thereby investigate the applicability
of the methodology to practical engineering systems.
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