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This paper presents a computational methodology for uncertainty quantification in pre-
dicting the trajectory of a generic, realistic aircraft based on information regarding flight
plan, aircraft information, wind and weather information, etc. Predicting the trajectory
of aircraft is important from the point of view of analyzing and predicting the safety of
the overall airspace, and making risk-informed decisions regarding the operations of the
airspace. The proposed methodology is based on using first-principles for analyzing the
motion of the aircraft and estimating its future trajectory. Since the core of this problem
lies in predicting the future behavior of a generic aircraft, it is essential to understand that
it is almost impossible to precisely predict the future trajectory with certainty. Hence, an
intuitive approach is to analyze the various sources of uncertainty that affect the aircraft
prediction and quantify their combined effect on the whole trajectory. Further, this paper
implements a global sensitivity analysis-based methodology to quantify the relative contri-
butions of the various sources of uncertainty to the uncertainty of the overall trajectory.
The proposed methodology is illustrated using a numerical example consisting of an aircraft
that takes off from the San Francisco International Airport.

I. Introduction

The National Airspace System (NAS) is continuing to evolve with new operational paradigms (e.g.,
dynamic Traffic Flow Management, Trajectory-Based Operations) and additional aircraft (e.g., Unmanned
Aerial Systems). In this increasingly complex system, maintaining safety becomes increasingly challenging.
NAS upgrades in the form of the FAA’s Next Generation Air Transportation System (NextGen) aims to
change the way the NAS operates such that capacity is expanded while safety is still ensured.1

It is very clear that knowledge regarding the trajectory of an aircraft plays an undeniably important role
in assessing the safety of not only that particular aircraft but also the entire airspace as a whole. As a result,
several researchers have studied trajectory prediction,2–5 planning6–8 and optimization9–12 for aircraft in the
context of NAS.

Some of the aforementioned papers have pursued probabilistic/statistical approaches for analyzing and
predicting aircraft trajectories. This is mainly because of the fact that there are several sources of uncertainty
that affect the operations and the overall safety of the NAS, and such uncertainties are best handled using
probabilistic methods. In fact, some of the above papers do agree that it is important to understand the
impact of such sources of uncertainty on the NAS and aircraft operations, and quantify the effect of these
uncertainties on aircraft trajectories.

Uncertainties affect not only aircraft trajectories but also the NAS as a whole. It can be argued13,14 that
it is important to analyze and quantify the various sources of uncertainty that affect the NAS, systematically
quantify their impact on the operations of the NAS, estimate the effect of uncertainty on safety, and aid
risk-informed decision-making activities to ensure smooth operation of the overall National Airspace System.
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As a result, there are a few researchers who have studied the impact of uncertainty on NAS operations
and overall safety. For example, Landry and Archer15 have focused on enumerating the different sources of
uncertainty in the NAS. In this work, several sources of uncertainty were identified; however, the relation-
ships between them and their overall effects on NAS-level safety were not addressed. In several research
manuscripts,16–18 flow models for air traffic management have been discussed and these models are able to
account for some types of uncertainty. These uncertainties are mostly modeled using simplistic Gaussian
variables that may rely on unrealistic assumptions; the true underlying distribution may not be Gaussian
and needs to be estimated, and such cases have not been addressed. Further, this analysis has been started
only for a few uncertain variables (say, for instance, departure delays), and several other sources of un-
certainty have not been studied, modeled, or accounted for. Weather has been accounted for in a few
publications19 and the methods discussed are mostly based on collecting existing data and using simplistic
linear regression-based models. The effects of weather delays in the overall NAS (system-wide, not localized
to a specific area) and delay propagation have not been studied in detail. Only a few sources of uncertainty
have been researched in some detail. For example, Wanke et al.20 discuss quantifying uncertainty in airspace
demand predictions, Kim et al. 21 and Garcio-Chico et al.22 discuss trajectory uncertainty modeling, Tu
et al.23 study estimating flight departure delays. As acknowledged by several of the aforementioned papers,
research in the context of uncertainty analysis appears to be at a very early stage in general and further
research is still needed to improve the state-of-the-art. There are several problems that need to be addressed
in the context of the NAS.

This paper takes a further step in this direction by focusing on uncertainty in aircraft trajectories, and
developing a computational framework for efficiently quantifying the uncertainty in aircraft trajectories. In
order to accomplish this, it is first necessary to identify/enumerate the various sources of uncertainty that
affect aircraft trajectory, and then systematically quantify the combined effect of such uncertainties on the
overall aircraft trajectory. This is in stark contrast with many existing approaches that assign/compute error
bounds for trajectories after the analysis required for trajectory prediction; the proposed approach advocates
the systematic inclusion of uncertainty right from the beginning, and quantifying the effect of uncertainty
on the aircraft trajectory using mathematically sound approaches. While quantifying uncertainty is only
one side of the coin, other interesting questions are: “What uncertainties are more important than others?
How much does each of the individual uncertainties contribute to the overall uncertainty in an aircraft
trajectory?” Such issues have never been addressed. In an effort towards answering such questions, this
paper also investigates the application of Sobol’s indices24 and global sensivity analysis25 methods for this
purpose.

The rest of this paper is organized as follows. Section II presents the computational approach for trajec-
tory prediction and modeling. Then, Section III discusses the impact of uncertainty on trajectory prediction
and investigates methods for uncertainty quantification. Then, Section IV presents the methodology for
global sensitivity analysis, using which it is possible to examine which sources of uncertainty are significant
from the point of view of trajectory prediction. Numerical results are presented in Section V, and finally,
conclusions and future work are discussed in Section VI.

II. Trajectory Prediction and Modeling

The NAS is made up of many interacting components: aircraft, weather systems, pilots, controllers, etc.
For the purpose of predicting aircraft trajectory, this paper considers only the open-loop case, where aircraft
are operating independently of each other and controllers are not interfering with their intended flight paths.
For the purposes of this paper, we consider only one aircraft and its flight plan along with a predicted
trajectory.

A. Modeling Framework

To begin with, a general state-space framework for aircraft trajectory prediction is presented. The first step
is to develop a model describing the dynamics of the aircraft, i.e., how the state x evolves in time:

x(k + 1) = f(k,x(k),u(k),v(k)), (1)

where f is the state function, u is the input vector (exogenous inputs to the system, such as the aircraft’s
intended flight routes and wind velocity at various altitudes), and v is the process noise vector. The state
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equation allows us to compute future values of the state given the inputs and the state at the time of
prediction. Note that t represents continuous-time and k represents discrete-time (while the models below
are presented in terms of continuous time, implementation is in terms of discrete time).

In order to make a prediction at time k using f , we require x(k), which, in general, is not known. Instead,
we have available an output vector y, defined through an output equation:

y(k) = h(x(k),u(k),n(k)), (2)

where h is the output function, and n is the sensor noise vector.

B. Trajectory Definition

The trajectory and the state-space models need to be defined such that the output of the above state-space
modeling framework would correspond to the aircraft trajectory. Consider a generic time tP at which the
trajectory needs to be predicted; then the trajectory consists of a vector of quantities that need to be
predicted for all time tP < t < tH , where tH represents the time-horizon, i.e., a future time-instant until
which the trajectory needs to be predicted.

These quantities, as mentioned before, correspond to the outputs y(t), and include:

y(t) =


Vg(t)

χg(t)

h(t)

λ(t)

τ(t)

 , (3)

where Vg is the groundspeed, χg is the aircraft heading (based on the groundspeed vector), h is the mean
sea level (MSL) altitude, λ is the latitude, and τ is the longitude. The heading χa is defined clockwise from
the north. If these quantities are predicted for future times tP < t < tH , then it is equivalent to predicting
the trajectory.

C. Dynamic Models

This section discusses the dynamic models that are used in this paper for trajectory prediction. Note that
the aforementioned state-space framework can be used with any set of dynamic models for aircraft trajectory
prediction. While high-fidelity simulations11 may be available, simpler models are recommended in this paper
in order to facilitate uncertainty analysis in real-time aircraft trajectory prediction and safety analysis.

This paper uses kinematic models of aircraft navigation with simplified dynamics and control, similar to
the models developed by others.26–28 The following description presents differential equations in continuous
time t; for implementation purposes, they are converted to difference equations using a sampling time of
10 s. The aircraft state vector is defined as

x(t) =



Va(t)

Vz(t)

χa(t)

h(t)

λ(t)

τ(t)


, (4)

where Vz is the climb rate, Va is the indicated airspeed, and χa is the aircraft heading based on the airspeed
vector.

The input vector is defined as

u(t) =


V ∗
a (t)

V ∗
z (t)

χ∗
a(t)

Vw(t)

χw(t)

 , (5)

3 of 11

American Institute of Aeronautics and Astronautics



where V ∗
a is the commanded airspeed, V ∗

h is the commanded climb rate, χ∗
a is the commanded aircraft

heading, Vw is the wind speed, and χw is the wind heading.
The latitude and longitude dynamics are given by

λ̇ =
Va sinχa +WN

Re + h
, (6)

τ̇ =
Va cosχa +WE)

(Re + h) cosλ
, (7)

where Re is the MSL radius of the Earth, WN is the northern component of the wind vector, and WE is the
eastern component of the wind vector:

WN = Vw cosχw, (8)

WE = Vw sinχw. (9)

For the speed and headings, simple dynamics are assumed, and the aircraft moves to its commanded
values with some inertia:

ḣ = Vz, (10)

V̇z =
1

Jz
(V ∗
z − Vz), (11)

V̇a =
1

Ja
(V ∗
a − Va), (12)

χ̇a =
1

Jχ
(χ∗
a − χa), (13)

where the J terms are the inertia parameters.
The groundspeed and ground-relative heading are computed from the vector addition of the airspeed

vector (magnitude Va and heading χa) and the wind vector (magnitude Vw and heading χw). The remaining
trajectory variables are directly those in the state vector (h, λ, and τ).

In order to simulate ahead, the inputs u must be defined for the prediction interval [tP , tH ]. The inputs
are computed as follows. First, the phase of flight is determined (takeoff, en-route, landing). For takeoff,
the comanded heading is set to the end of the runway, the commanded airspeed set to the predetermined
takeoff speed, and the climb speed set at 0 until a fast enough groundspeed is acheived, at which it is set
to a predetermined climb speed (which is uncertain). In en-route, the aircraft is commanded to follow the
flight plan waypoints at cruise speed and cruise altitude. In landing, the commanded airspeed is set to the
predetermined landing speed, the commanded heading pointing towards the runway, and the commanded
descent speed set to a predetermined value.

Using the above models, it is possible to enumrate all quantities (though not exhaustively since the
models are only an approximation of the underlying reality) that affect aircraft trajectory prediction; some
of these quantities are uncertain and their effect on aircraft trajectory is discussed in the next section.

III. Uncertainty Quantification in Aircraft Trajectory

The topic of uncertainty quantification has received significant attention and researchers have developed
both probabilistic29–31 and non-probabilistic32–34 methods for this purpose; non-probabilistic approaches
have rarely been considered in air traffic analysis and hence, are not discussed further in this paper. Never-
theless, a systematic approach to quantifying uncertainty in aircraft trajectory has still not been developed
in detail. As mentioned before, existing works either focus only on a very small subset of uncertainties and
mostly perform a posteriori analysis of uncertainties through computing errors bounds. On the contrary, this
paper advocates the inclusion of uncertainties right from the start of the prediction analysis and mathemat-
ically computes the effect of such uncertainties on aircraft trajectory prediction. The impact of uncertainty
on generic applications involving future predicton has been studied to some extent,35 and this paper extends
the investigation for trajectory prediction.

Typically, there are three steps involved in uncertainty analysis for a generic problem involving prediction:
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1. Uncertainty Identification and Quantification: This involves enumerating and computing the
statistics of all quantities that affect the quantity of interest, i.e., aircraft trajectory in the context
of this paper. In other words, these are the sources of uncertainty that affect trajectory prediction.
This includes quantities such as wind speed/direction, initial position of the aircraft, departure time,
etc. In this step, probability distributions for each of these quantities are computed. Note that it may
not be reasonable to assume that these distributions are Gaussian; they may be of any type or even
non-parametric.36

2. Uncertainty Propagation: This involves the use of computational tools to systematically compute
the joint effect of the aforementioned sources of uncertainty and quantify the probability distribution
of the entire trajectory as a whole. This can be accomplished by estimating the joint effect of the
various sources of uncertainty on the quantities in Eq. 3, and quantifying the probability distributions
of these quantities for all future time-instants, i.e., tP < t < tH .

3. Uncertainty Management: Uncertainty management is a general term used to refer to different
activities which aid in managing/reducing uncertainty in the final prediction. There are several aspects
of uncertainty management. For instance: ‘What if the uncertainty in the aircraft trajectory is too
high? Is it possible to reduce/improve the uncertainty estimates?’ The answers to these questions
lie in identifying which sources of uncertainty are significant contributors to the uncertainty in the
trajectory prediction. Some aspects of this process will be discussed later in Section IV.

A. Sources of Uncertainty

The following sources of uncertainty are considered in this paper:

1. Initial air speed (Va(t)) at the time of prediction (tP )

2. Initial climb speed (Vz(t)) at the time of prediction (tP )

3. Initial heading (χa(t)) at the time of prediction (tP )

4. Initial altitude (h(t)) at the time of prediction (tP )

5. Initial latitude (λ(t)) at the time of prediction (tP )

6. Initial longtitude (τ(t)) at the time of prediction (tP )

7. Future wind speed (Vw) for all time tP < t < tH

8. Future wind heading (χw) for all time tP < t < tH

9. Commanded climb speed (V ∗
h ) during the takeoff portion of the flight

10. Commanded airspeed (V ∗
a ) during the takeoff portion of the flight

11. Control parameter (Gz), affecting how fast the aircraft responds to commanded changes in climb speed

12. Control parameter (Ga), affecting how fast the aircraft responds to commanded changes in airspeed

13. Model inertia parameter (Jχ)

B. Trajectory Prediction: An Uncertainty Propagation Problem

For a given realization of all the above quantities, there exists a unique trajectory, i.e., a value of y(k) in
Eq. 2, for all time tP < t < tH . Let X denote the vector of quantities enumerated in earlier in Section A. Let
Y denote any of the quantities that correspond to the trajectory at any particular time instant, as mentioned
earlier in Eq. 3.

There exists a realization of Y corresponding to a realization of X. In general, this relation can be
expressed as a function Y = G(X). The goal is to propagate all the uncertainty in X (expressed in terms
of the probability distribution of X) through G, and quantify the probability distribution of Y .
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(a) Random 2-D Sampling (b) 2-D Latin Hypercube Sampling

Figure 1: Illustrating Random 2-D Sampling and 2-D Latin Hypercube Sampling

C. Methods for Uncertainty Propagation

Monte Carlo sampling37 is a well-known approach in order to perform uncertainty propagation. A standard
Monte Carlo approach generates many realizations of X, and evaluates G for each realization. Thus, many
realizations of Y can be computed, and hence, the probability distribution of Y can be computed.

However, Monte Carlo sampling may require using a large number of samples, and hence an equal
number of evaluations of G. In particular, exhaustive sampling may be necessary to accurately capture
information regarding the tails of probability distributions where unsafe events are captured (since they
have lower likelihood of occurrence). Hence, in many scenarios, such exhaustive Monte Carlo sampling could
be cost-prohibitive or not suitable for real-time operations.

In order to overcome this challenge, this paper uses Latin Hypercube Sampling that focuses on generating
samples consistently over the entire domain of all random variables. Consider Nd random variables, and say,
it is desired to generate Ns samples. First, the range of each variable is divided into Ns equally probable
intervals, thereby forming a hypercube. In order to facilitate such division into equally probable intervals, the
original probability distributions of the variables are not considered at first, and instead, the samples are first
generated from the standard uniform random variable [0, 1]. Then, sample positions are chosen such that
there is exactly one sample in each row and exactly one sample in each column of this grid (similar to placing
rooks on a chess board so that no rook may attack another). The resulting hypercube can be denoted as Uij
where ‘i’ denotes the sample number (varies from 1 to Nd) while ‘j’ denotes the random-variable number
(varies from 1 to Nd). The difference between two-dimensional random Monte Carlo sampling and two-
dimensional Latin hypercube sampling is illustrated in Fig. 1a (Monte Carlo samples) and Fig. 1b (Latin
Hypercube samples).

Each generated Latin Hypercube sample is then passed through the function G, and corresponding
samples of Y are generated, thus generating samples for the entire trajectory. This set of samples establishes
a probability distribution (in terms of density) for the trajectory-related variables. An additional advantage
of the Latin hypercube sampling approach is that it is a variance reduction technique. Traditional Monte
Carlo sampling is highly non-deterministic and may produce significantly different results when repeated
(especially when the number of samples is small). On the other hand, Latin hypercube sampling reduces
such variation effectively. This in turn further improves the prediction of probabilities and event times in
the context of safety assessment.13

IV. Global Sensitivity Analysis for Aircraft Trajectory

The goal in sensitivity analysis is to apportion the uncertainty in Y to the uncertainty in inputs X. The
topic of sensitivity analysis is closely associated with uncertainty propagation, and Saltelli et al.25 state
that uncertainty propagation is incomplete without the results of quantitative sensitivity analysis. Saltelli et
al.25 explain that derivative-based local sensitivities are not sufficient to study the contributions of multiple
sources of uncertainty to the overall prediction uncertainty and it is necessary to pursue a global sensitivity
analysis approach for this purpose. The term “global” refers to computing the sensitivity metric considering
the entire probability distribution of the input.

The fundamental theorem that governs the development of the global sensitivity analysis methodology

6 of 11

American Institute of Aeronautics and Astronautics



is the variance decomposition theorem. Consider a particular input quantity Xi. Then,

V (Y ) = V (E(Y |Xi)) + E(V (Y |Xi)) (14)

The above variance decomposition is true if and only if there exists a value of Y for every value X; in other
words, G is a deterministic transfer function, as explained at the beginning of this section.

In order to compute the sensitivity of a particular input quantity Xi, this input quantity is first fixed
at a particular deterministic value and the expectation of the model output is calculated by considering the
variation in other output quantities (denoted by X−i). Thereby, the effect of the uncertainty of all other
input quantities is averaged. Then, different deterministic values of the input quantity Xi are considered
based on their probability distributions and the variance of the expectation is calculated. This metric is
known as the first-order effect index of the input variable Xi on the variance of the output Y :

Si1 =
VXi(EX−i(Y |Xi))

V (Y )
(15)

The first-order effect measures the contribution of the variable Xi by itself. The sum of first order indices of
all variables is always less than or equal to unity. The difference between this sum and unity is representative
of the interaction between the input variables. Further, the higher the first-order effect, the more important
the variable is.

The interaction or combined effect of two variables Xi and Xj can also be calculated similarly. Alterna-
tively, consider the expression:

VX−i(EXi(Y |X−i))

V (Y )
;

this expression includes all interaction terms of all orders concerning all variables X−i; any term involving
Xi (both individual and any interaction with others) would not be included. As the sum of all the sensitivity
indices must be equal to unity, the total effects (the sum of individual effects of Xi and all interactions with
other quantities) can be calculated as:

SiT = 1− VX−i(EXi(Y |X−i))

V (Y )
(16)

The sum of the total effects indices of all variables is always greater than or equal to unity; equality holds
when there is no interaction between the input quantities. (In this case, the first-order effects indices are
equal to the total effects indices). If the total effects index is low, then it means that the input quantity is
not important.

It is important to calculate both the first-order effects and the total effects indices. If the first-order
index of a particular variable Xi is low, then it is not necessary that this variable is unimportant. The
interaction of this variable with other variables may contribute significantly to the variance of Y and hence,
there is a possibility that Xi is, in fact, an important variable. The effects of interaction are reflected in the
total effects index. Further, the difference between the total effects index and the first-order effects index
provides an estimate of the contribution of variance due to the interaction between Xi and other variables.
Thus, both the first-order and total effects indices must be computed in order to assess the sensitivities of
the variables.

V. Numerical Results

For the sake of illustration, this numerical example considers a particular aircraft (a Boeing 737-800) that
takes off from a particular airport (Runway ‘1L-19R’, in San Francisco, in this case), as shown in Fig. 2.

As mentioned before, the trajectory of an aircraft is described in terms of five different time-dependent
quantities:

1. Airspeed (measured in knots)

2. Heading (angle, measured in degrees)

3. Altitude (measured in feet)
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4. Latitude (measured in degrees)

5. Longtiude (measured in degrees)

A Latin Hypercube sampling approach with 1000 samples and 13 dimensions (each dimension correspond-
ing to on uncertain quantity) is implemented in this paper, and the uncertainty in the entire trajectory, i.e.,
the uncertainty in each of the above 5 quantities is computed as a continuous function of time. The entire
probability distribution for each of the five quantities is estimated for continuous future time-instants until
t = tH ; this look-ahead time is chosen to be 5 minutes in this paper. Within this time-horizon, Y is predicted
for every 10 seconds, and hence there are 31 predictions. Thus, the trajectory can be expressed as a matrix
of 5 output quantities, 31 time-instants, and 1000 samples.

The lower and upper bounds (5% bounds, for the sake of illustration) of the five outputs along with the
medians are plotted in Fig. 3 - Fig. 7, continuously as a function of time. For the sake of comparison, the
actual/true trajectory of the flight under consideration is also indicated.

Figure 2: San Francisco Airport: Runways
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Figure 3: Trajectory: Groundspeed vs Time
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Figure 4: Trajectory: Heading vs Time
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Figure 5: Trajectory: Altitude vs Time
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Figure 6: Trajectory: Latitude vs Time
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Figure 7: Trajectory: Longitude vs Time

From the results it can be seen that, the uncertainty in the prediction of latitude, longitude, and heading
are reasonably small and remain so as a function of future time. The prediction of speed (Fig. 3) is initially
uncertain, but the precision increases and the uncertainty decreases shortly thereafter. The most interesting
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aspect of the trajectory prediction results seems to be the prediction of altitude as a function of future time.
It is easy to observe that the uncertainty in the altitude prediction (Fig. 5) steadily increases as a function
of time.

Such an analysis, i.e., identifying which components of the trajectory are significantly affected because
of uncertainty, is an important feature of the proposed approach; only the proposed systematic method-
ology can clearly arrive at such conclusions, i.e., compute significantly different uncertainty estimates for
various quantities of interest within the trajectory-prediction framework. Such an analysis would have been
impossible with existing approaches that simply impose uncertainty bounds after prediction is done.

Following uncertainty propagation analysis, global sensitivity analysis was also conducted by focusing
the prediction of the probability distribution at the farthest time, i.e., at t = tH (chosen to be five minutes,
for the sake of illustration). Since, the uncertainty in the altitude prediction is the most significant amongst
the five predicted quantities, and global sensitivity analysis is performed in order to estimate the sensitivity
of altitude to the various sources (13 uncertain variables, enumerated in Section III.A) of uncertainty, and
the results are shown in Table 1.

Table 1: Sensitivity of Altitude Prediction

Uncertain Variable Symbol First-order Effects Total Effects Index

Variable 1 Va(tP ) 8.9× 10−7 1.5× 10−6

Variable 2 Vz(tP ) 3.3× 10−5 3.4× 10−5

Variable 3 χa(tP ) 1.8× 10−5 5.0× 10−3

Variable 4 h(tP ) 2.8× 10−5 5.2× 10−3

Variable 5 λ(tP ) 2.6× 10−6 3.1× 10−6

Variable 6 τ(tP ) 6.7× 10−6 7.4× 10−6

Variable 7 Vw 6.6× 10−5 6.7× 10−5

Variable 8 χw 1.4× 10−5 1.5× 10−5

Variable 9 V ∗
h 2.2× 10−6 2.9× 10−6

Variable 10 V ∗
a 8.8× 10−1 8.9× 10−1

Variable 11 Gz 7.4× 10−2 7.5× 10−2

Variable 12 Ga 6.1× 10−3 1.2× 10−2

Variable 13 Jχ 1.1× 10−4 1.2× 10−4

It is observed from Table 1, the “Variable 10”, i.e, the commanded airspeed during the takeoff portion of
the flight contributes to approximately 90% of the variance in altitude prediction. The second most important
source of uncertainty arises from “Variable 11”, i.e., a control parameter that affects how fast the aircraft
responds to commanded changes in climb speed. This implies that, in order to reduce uncertainty in the
altitude, it is necessary to reduce the uncertainty in the commanded airspeed. Such results from sensitivity
analysis are also possible only within the proposed systematic uncertainty management framework, and this
facilitates meaningful uncertainty reduction, which is important from the point of view of decision-making.

VI. Conclusion

This paper presented a computational approach for predicting the uncertainty in aircraft trajectories.
This analysis is important for assessing the safety of the aircraft as well as the entire airspace. Using the
uncertainty in the trajectory, it is possible to preemptively and proactively better predict impending aicraft
separation issues, fuel shortage situations, airspace congestion, etc. in advance even before the occurrence of
these events. The proposed approach is in stark contrast with existing approaches that are mostly reactive
in nature, and hence will aid in the the next-generation air traffic analysis and management system.

A generic state-space modeling framework for trajectory prediction was presented and this framework
was illustrated using a set of aircraft dynamic models. Several sources of uncertainties were investigated in
this paper, and their joint effect on the overall uncertainty in the trajectory was quantified by estimating
the probability distribution of the trajectory itself. In addition, global sensitivity analysis was conducted to
quantify the contributions of the different sources of uncertainty to the overall uncertainty in the trajectory.
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There are several possible directions for future work. As more complicated dynamic-models are included,
the effect of additional sources of uncertainty can be quantified. While advanced Monte Carlo analysis
methods have been shown to be suitable for uncertainty propagation, it is also worthwhile to investigate
alternative approaches based on analytical methods38,39 and surrogate modeling techniques.40,41 Finally,
it is also necessary to integrate the proposed techniques into airspace safety assessment methodologies and
guide operational decision-making.
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