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Abstract— Systems health management (SHM) is an impor-
tant set of technologies aimed at increasing system safety and
reliability by detecting, isolating, and identifying faults; and
predicting when the system reaches end of life (EOL), so that
appropriate fault mitigation and recovery actions can be taken.
Model-based SHM approaches typically make use of global,
monolithic system models for online analysis, which results
in a loss of scalability and efficiency for large-scale systems.
Improvement in scalability and efficiency can be achieved by
decomposing the system model into smaller local submodels and
operating on these submodels instead. In this paper, the global
system model is analyzed offline and structurally decomposed
into local submodels. We define a common model decomposition
framework for extracting submodels from the global model.
This framework is then used to develop algorithms for solving
model decomposition problems for the design of three separate
SHM technologies, namely, estimation (which is useful for fault
detection and identification), fault isolation, and EOL predic-
tion. We solve these model decomposition problems using a
three-tank system as a case study.
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1. INTRODUCTION
Systems health management (SHM) is a critical set of tech-
nologies that focus on increasing system safety and reliability
by detecting, isolating, and identifying faults; and predicting
when the system reaches end of life (EOL), so that fault
mitigation and recovery actions can be taken. Model-based
SHM approaches [1–4] are usually favored over purely data-
driven methods [5] when knowledge about the system and
its behaviors is available. Model-based approaches typically
make use of global, monolithic system models for online
analysis, which results in a loss of scalability and efficiency
for large-scale systems.

These issues can be addressed by decomposing the global
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SHM problems into local, independent subproblems, in
which the local results can be merged into a global result. For
a model-based approach, this corresponds to a decomposition
of the underlying models [6–9]. Such decompositions are
performed as offline design activities based on structural
analysis of the global system model.

In this paper, we propose a common model decomposition
framework and an algorithm for structural model decompo-
sition. We show how, through offline analysis of the global
system model, we can solve model decomposition problems
for three separate SHM tasks, namely, estimation (used for
residual generation, fault detection, and fault identification),
fault isolation, and prediction (used for fault prognostics).
For each SHM task, we select a specific approach – [10] for
estimation, [7] for isolation, and [9] for prognostics – and
demonstrate how the system can be decomposed using the
common framework proposed in this paper to fulfill the needs
of each approach.

Our decomposition framework, utilizing the notion of com-
putational causality, decomposes models into submodels by
considering some of the variables in a model as local inputs.
As a result, some of the unknown variables in the model
can be computed from these local inputs, thereby resulting
in a smaller set of equations that are decoupled from the
rest of the system equations given these local inputs. Thus
each submodel can be used to compute the values of its
unknown variables independently from all other submodels.
These independent submodels allow reasoning algorithms to
be implemented on each submodel independently, thereby
distributing the computation and improving efficiency.

Specifically, this paper makes the following contributions: (i)
we propose a formal model decomposition framework for
defining causal models and submodels; (ii) we develop an
algorithm for designing submodels based on structural model
decomposition; and (iii) we demonstrate the usefulness of
the model decomposition framework by applying it to model
decomposition problems for three specific SHM functions:
estimation, fault isolation, and prediction. Throughout this
paper, we illustrate our model decomposition framework and
algorithms using a three-tank system.

This paper is organized as follows. Section 2 presents the
model decomposition framework. Sections 3-5 demonstrate
how this structural model decomposition framework can
be leveraged to design submodels that are used in estima-
tion, fault isolation, and prediction, respectively. Section 6
presents related work, and Section 7 concludes the paper.

2. MODEL DECOMPOSITION FRAMEWORK
This section presents our framework for defining models and
submodels and a structural model decomposition algorithm
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Figure 1. Schematic of three-tank system.

that can be leveraged for efficient and scalable implemen-
tation of different functions of SHM. We begin with the
definition of a model.

Definition 1 (Model) A model M is a tuple M = (V,C),
where V is a set of variables, and C is set of constraints. V
consists of five disjoint sets, namely, the set of state variables,
X; the set of parameters, Θ; the set of inputs, U ; the set
of outputs, Y ; and the set of auxiliary variables, A. Each
constraint c = (εc, Vc) ∈ C consists of an equation εc
involving variables Vc ∈ V .

Input variables u ∈ U are known or measured; and the output
variables y ∈ Y correspond to (measured) sensor signals.
Parameters θ ∈ Θ include explicit model parameters that
are used in the model constraints. Θ need not consist of all
parameters in the equations, only those that must be included
explicitly (e.g., for joint state-parameter estimation, as shown
in Section 3, or fault isolation, as shown in Section 4). These
parameters, by definition, are not computed in terms of any
other variables, and, in this way, appear as inputs. Since the
state variables X are, by definition, enough to describe the
future behavior of the system, the auxiliary variables a ∈ A
are not strictly needed, however, they make the model easier
to parse, develop, and implement.

As shown in Defn. 1, a constraint c = (εc, Vc) includes an
equation εc over the set of variables Vc. Note that c does not
impose any computational causality on the variables Vc, i.e.,
although εc captures the information about how to compute
a variable v ∈ Vc in terms of all other variables in Vc, the
constraint does not specify which v ∈ Vc is the dependent
variable in equation εc. We write a constraint c1 = (εc1 , Vc1)
by its equation, e.g., as follows:

a+ b = c+ d (c1)

where Vc1 = {a, b, c, d}.

Throughout the paper, we will use a three-tank model as a
common example. The three-tank model is representative
of several real-world systems, such as spacecraft propellant
loading systems [11] and fuel transfer systems of fighter
aircrafts [12], among others. Fig. 1 shows the schematic of
a three-tank system. For tank i ∈ {1, 2, 3}, pi denotes the
pressure at the bottom of the tank, hi denotes the fluid height
in the tank, andQi denotes the volumetric flow rate out of the
outflow pipe. For adjacent tanks i and j, Qij denotes the flow
rate in the connecting pipe, and Qin is the inflow into tank 1.

Example 1: We model the three-tank system with the follow-

ing constraints:

p1 =

∫ t

t0

ṗ1dt (c2)

p2 =

∫ t

t0

ṗ2dt (c3)

p3 =

∫ t

t0

ṗ3dt (c4)

ṗ1 =
1

K1

(
Qin −

p1
R1
− p1 − p2

R12

)
(c5)

ṗ2 =
1

K2

(
p1 − p2
R12

− p2
R2
− p2 − p3

R23

)
(c6)

ṗ3 =
1

K3

(
p2 − p3
R23

− p3
R3

)
(c7)

h∗1 =
p1 ·K1

A1
(c8)

Q∗12 =
p1 − p2
R12

(c9)

Q∗3 =
p3
R3

(c10)

where for tank i, Ai denotes the tank cross-sectional area,
Ki denotes the capacitance, Ri denotes the resistance of
the outflow pipe, and for tanks i and j, Rij denotes the
flow resistance of the pipe between the tanks. Here X =
{p1, p2, p3}, Θ = ∅, U = {Qin}, Y = {h∗1, Q∗12, Q∗3}2, and
A = {ṗ1, ṗ2, ṗ3}.

In order to define for a constraint c which variable v ∈ Vc is
the dependent variable that is computed by the others using
the constraint, we require the notion of a causal assignment.

Definition 2 (Causal Assignment) A causal assignment α to
a constraint c = (εc, Vc) is a tuple α = (c, voutc ), where
voutc ∈ Vc is assigned as the dependent variable in equation
εc.

Unlike a constraint, a causal assignment defines a computa-
tional causality (or computational direction) to a particular
variable voutc ∈ Vc in the constraint in which it can be
computed in terms of all other variables in Vc. We write
a causal assignment of a constraint using the constraint’s
equation in a causal form. For example, for constraint c1
above choosing voutc1 = d:

d := a+ b− c (α1)

where Constraint c1 is rewritten with a := symbol to explic-
itly denote that the direction of computation is from variables
a, b, and c to d.

We say that a set of causal assignments A, for a modelM is
valid if

• For all v ∈ U ∪ Θ, A does not contain any α such that
α = (c, v), i.e., U and Θ are not computed in terms of any
other variables.

2We name output variables with an asterisk so as to not confuse the measured
variables from unmeasured versions of them that may be used as state or
auxiliary variables.
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• For all v ∈ Y , A does not contain any α = (c, voutc ) where
v ∈ Vc − {voutc }, i.e., no variable is computed in terms of
any y ∈ Y .

• For all v ∈ V −U −Θ, A contains exactly one α = (c, v),
i.e., other than the variables in U and Θ, every variable
must have exactly one constraint to compute it.

A causal model is a model extended with a valid set of causal
assignments.

Definition 3 (Causal Model) Given a modelM∗ = (V,C), a
causal model forM∗ is a tupleM = (V,C,A), where A is
a set of valid causal assignments.

Example 2: The causal assignments for the three-tank model
introduced in Example 1 are as follows:

p1 :=

∫ t

t0

ṗ1dt (α2)

p2 :=

∫ t

t0

ṗ2dt (α3)

p3 :=

∫ t

t0

ṗ3dt (α4)

ṗ1 :=
1

K1

(
Qin −

p1
R1
− p1 − p2

R12

)
(α5)

ṗ2 :=
1

K2

(
p1 − p2
R12

− p2
R2
− p2 − p3

R23

)
(α6)

ṗ3 :=
1

K3

(
p2 − p3
R23

− p3
R3

)
(α7)

h∗1 :=
p1 ·K1

A1
(α8)

Q∗12 :=
p1 − p2
R12

(α9)

Q∗3 :=
p3
R3

(α10)

Here, we assume integral causality, i.e., state variables are
computed via integration.

For the purposes of visualizing a causal model, we represent
M using a directed graph G = (V, E), where V is the set
of vertices corresponding directly to the variables V in M,
and E is the set of edges, where for every (c, voutc ) ∈ A, we
include an edge (v′, voutc ) for each v′ ∈ Vc − {voutc }.

Example 3: Fig. 2 shows the causal graph for the three-
tank system of Example 1 with Y = {h∗1, Q∗12, Q∗3}. State
variables are denoted using dashed boxes, output variables
are denoted using solid-lined boxes, and input variables are
denoted using dashed circles.

Given a model, we are interested in generating submodels that
allow for the computation of a given set of variables using
only local inputs. Given a definition of the local inputs (in
general, selected from V ) and the set of variables we wish to
be computed by the submodel (selected from V − U − Θ),
we create from a causal model M a causal submodel Mi.
We obtain a submodel in which only a subset of the variables
in V are computed using only a subset of the constraints in
C. In this way, each submodel computes its variable values
independently from all other submodels. A submodel can be
defined as follows.

p1 p2 p31p

h1

2p 3p

Q3
  *    *Q12

  *

Qin

Figure 2. Causal graph of three tank system with Y =
{h∗1, Q∗12, Q∗3}.

Definition 4 (Causal Submodel) A causal submodelMi of a
causal modelM = (V,C,A) is a tupleMi = (Vi, Ci,Ai),
where Vi ⊆ V , Ci ⊆ C, and Ai is a set of (valid) causal
assignments forMi.

Note that, in general, Ai is not a subset of A, because
since we allow to select local inputs from Y , these vari-
ables become local inputs, i.e., appear in Ui, and the causal
assignment in A that computes these variables is changed
to a form where some other variable in the corresponding
constraint is selected as the dependent variable. As a result,
these causal assignments will be different, but the rest of the
causal assignments in Ai will still be found in A.

The procedure for generating a submodel from a causal model
is given as Algorithm 1. Given a causal model M, a set of
variables that are considered as local inputs U∗ ⊇ U , and a
set of variables to be computed V ∗, and a preferences list,
P (explained below), the GenerateSubmodel algorithm
derives a causal submodelMi that computes V ∗ using U∗.

In Algorithm 1, the queue, variables, represents the set of
variables that have been added to the submodel but have not
yet been resolved, i.e., they cannot yet be computed by the
submodel. This queue is initialized to V ∗, the set of variables
that must be computed by the submodel. The algorithm then
loops until this queue has been emptied, i.e., the submodel
can compute all variables in V ∗ using only variables in
U∗. Within the loop, the next variable v is popped off the
queue. We then determine the best constraint to use to resolve
this variable with the GetBestConstraint subroutine
(Subroutine 2). We add the constraint to the submodel and the
causal assignment for the constraint in the form that computes
v. We then need to resolve all the variables being used to
compute v, i.e., all its predecessors in the causal graph. Each
of these variables that have not already been visited (not
already in Vi), are not parameters (not in Θ), and are not local
inputs (not in U∗) must be resolved and so are added to the
queue. Then the variables are added to the submodel and the
loop continues until the queue is emptied.

The goal of the GetBestConstraint subroutine is to find
the best constraint to resolve v. The subroutine constructs
a set C that is the set of constraints that can completely
resolve the variable, i.e., resolves v without further backward
propagation (all other variables involved in the constraint are
in Vi ∪ Θ ∪ U∗), and then chooses the best according to
a preferences list P . If no such constraint exists, then the
constraint that computes v in the current causal assignment is
chosen, and further backward propagation will be necessary.
Here, we are preferring minimal resolutions of v, i.e., those
that do not require backward propagation, because then the
submodel will be minimal in the number of variables and
constraints needed to compute V ∗.
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Algorithm 1Mi = GenerateSubmodel(M, U∗, V ∗, P )

1: Vi ← V ∗

2: Ci ← ∅
3: Ai ← ∅
4: variables← V ∗

5: while variables 6= ∅ do
6: v ← pop(variables)
7: c← GetBestConstraint(v, Vi, U

∗,A, P )
8: Ci ← Ci ∪ {c}
9: Ai ← Ai ∪ {(c, v)}
10: for all v′ ∈ Vc do
11: if v′ /∈ Vi and v′ /∈ Θ and v′ /∈ U∗ then
12: variables← variables ∪ {v′}
13: end if
14: Vi ← Vi ∪ {v′}
15: end for
16: end while
17: Mi ← (Vi, Ci,Ai)

In general, a variable v is involved in many constraints,
however, exactly one of these constraints, in the given causal
assignment, computes v. If this constraint does not com-
pletely resolve v, we find the constraints in which v is used
to compute some output variable y ∈ Y ∩ U∗. We consider
modifying the causal assignment so that such a y (used now
as an input) is used to compute v, instead of v being used
to compute y. This can only be performed if, for the causal
assignment in which y is being used to compute v, all other
variables involved in the constraint are in Vi ∪ Θ ∪ U∗,
in which case this constraint in this new causal assignment
can completely resolve v. If no constraint can be found
that completely resolves v, then the constraint that in the
current causal assignment computes v will have to be used,
and backward propagation will be necessary. Otherwise, we
select the most preferable constraint that completely resolves
v. Preference among constraints (in which an output would
be transformed to an input) is computed using a preferences
list P , that contains a partial ordering of all the outputs in the
model of the form yi / yj , meaning that yj is preferred over
yi. The subroutine goes through every pair of constraints and
removes from the list of most preferable constraints, C ′, any
constraint that uses a measured variable that is less preferable
to one involved in another constraint. Of those remaining,
an arbitrary choice is made. The preferences list can be used
to prefer measured variables with less noise over those with
more noise.

Example 4: For the three-tank model (Fig. 2), say that we
select U∗ = {Qin, h

∗
1, Q

∗
12} and V ∗ = {Q∗3}, and P =

{(Q∗12 / h∗1)}. Algorithm 1 starts with Vi = Q∗3, and
propagates back to p3, and adds it to Vi. From p3 it propagates
back to ṗ3, adding it to Vi. Of the predecessors of ṗ3, p3 is
already in Vi, so is not added to the variables queue, and p2
is not, so the algorithm propagates back to p2, adding it to Vi.
At this point, there are two constraints to consider to possibly
compute p2: (i) the constraint c3 with causal assignment α3
that computes p2 from ṗ2, or (ii) the constraint c9 with causal
assignment α9, set to have the new causal assignment

p2 := p1 −Q∗12 ·R12, (α11)

that computes p2 from p1 and Q∗12. In α11, p1 is required but
is not yet included in Vi, so this constraint cannot completely
resolve p2 and we default to using causal assignment α3,
propagating back to ṗ2 and from there to p1 (p2 and ṗ3
are already in Vi). Now, at p1, we have three constraints
to consider that may resolve p1: (i) the constraint c2 with
causal assignment α2 that computes p1 from ṗ1, (ii) the

Subroutine 2 c = GetBestConstraint(v, Vi, U
∗,A, P )

1: C ← ∅
2: cv ← find c where (c, v) ∈ A
3: if Vcv ⊆ Vi ∪ U∗ then
4: C ← C ∪ {cv}
5: end if
6: for all y ∈ Y ∩ U∗ do
7: cy ← find c where (c, y) ∈ A
8: if v ∈ Vcy and Vcy ⊆ Vi ∪ U∗ then
9: C ← C ∪ {cy}
10: end if
11: end for
12: if C = ∅ then
13: c← cv
14: else if cv ∈ C then
15: c← cv
16: else
17: C′ ← C
18: for all c1, c2 ∈ C where c1 6= c2 do
19: y1 ← find y where (c1, y1) ∈ A
20: y2 ← find y where (c2, y2) ∈ A
21: if (y1 / y2) ∈ P then
22: C′ ← C′ − {c1}
23: end if
24: end for
25: c← first(C′)
26: end if

p1 p2 p3

Q3h1

2p 3p

  *    *

Figure 3. Causal graph for the minimal submodel of the
three-tank system computed when U∗ = {Qin, h

∗
1, Q

∗
12},

V ∗ = {Q∗3} and P = {(Q∗12 / h∗1)}.

constraint c9 with causal assignment α9, set to have the new
causal assignment

p1 := p2 +Q∗12 ·R12 (α12)

that computes p1 from Q∗12 and p2, and (iii) the constraint c8
with causal assignment α8, set to have the new causal assign-
ment

p1 :=
h∗1 ·A1

K1
(α13)

that computes p1 from h∗1. Since the preferences list P prefers
h∗1 over Q∗12, the algorithm chooses to compute p1 using
causal assignment α13. The graph for the resultant submodel
is shown in Fig. 3.

The algorithm generates complete submodels, i.e., the sub-
models contain at least the variables needed to compute its
V ∗. This is guaranteed because the algorithm only stops
propagation at variables included in Vi ∪ Θ ∪ U∗. Since
U∗ ⊇ U , given a particular U∗ and V ∗, there may be
multiple submodels that can compute V ∗ using U∗, with the
global system model always being an option. The goal of the
decomposition algorithm is to generate minimal submodels,
i.e., submodels with the minimal number of constraints (and
hence, state variables) needed to compute V ∗ using U∗.
It is possible for nonminimality to be obtained when the
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GetBestConstraint subroutine could have resolved a
constraint by searching in the forward causality direction
more than one constraint ahead. For example, a variable
v can be resolved if an output is computed from a single
auxiliary variable that is computed only from v, however
GetBestConstraint would ignore such a possibility.
The algorithm can be extended to handle such a situation,
although at a loss of efficiency, but that is beyond the scope
of this work. However, the simpler solution is to structure
the auxiliary variables to avoid such circumstances, e.g, when
minimality is a requirement the auxiliary variables can be
discarded to ensure minimality.

In the worst case, the algorithm must visit all variables and
constraints. On each variable, Subroutine 2 is called, which
in the worst case considers all variables in Y ∩ U∗. So, the
overall worst-case time complexity is O((|V | + |E|) · |Y ∩
U∗|). Since (Y ∩U∗) ⊂ V , the algorithm is polynomial in the
model size. On average, some amount of decomposition will
be possible so the complexity will be much lower in practice.

In the following sections, we show how this model decompo-
sition approach can be applied to the problems of estimation,
fault isolation, and prediction.

3. MODEL DECOMPOSITION FOR
ESTIMATION

Estimation in the SHM context can be used for three main
purposes, namely, for fault detection (through residual gen-
eration), fault identification, and systems health state esti-
mation. The three different purposes require the estimation
problem to be posed somewhat differently. For example, for
fault detection, the estimation problem involves estimating
the value of measured variables (based on estimated values
of state variables) and comparing these estimates to actual
measured values to a generate residual signal. For fault
identification, a set of parameters associated with faults are
estimated. Finally, for system health state estimation, joint
estimations of hidden state and unknown parameter variables
are computed. In general, the estimation problem is to
generate a probability distribution p(X,Θ|Y ).

The advantage of model decomposition for estimation is that
the global system model is partitioned into minimal sub-
models, which can be implemented in a distributed fashion,
obtaining robust and efficient online estimation solutions as
compared to estimation using the global system model. Each
local estimator i computes p(Xi,Θi|Yi). Due to the decou-
pled nature of the submodels, the local estimation problems
can be defined independently of each other, and the local
estimators do not need to communicate. This is in contrast
to other distributed estimation schemes in which local esti-
mators communicate state estimates among one another.

The model decomposition framework proposed in this paper
can be used to derive minimal estimator submodels from the
global system model. Each minimal estimator will take a
subset of the system inputs, U , and the system outputs, Y ,
to compute an estimate of measured variables, Yi. So, the U∗
and V ∗ sets for this decomposition problem are formed as
U∗ = U ∪ (Y − {Yi}) and V ∗ = Yi. To define a set of local
estimators, we typically create one for each y ∈ Y , where
V ∗ = Yi = {y}. In previous works, we have used minimal
estimation submodels for tracking and fault detection as in
[10], for fault identification as in [10, 13], and for systems
health state estimation [8].

Qin p1 p2 p31p 2p 3p

h1 h2 h3
* **

Figure 4. Causal graph of three tank system with Y =
{h∗1, h∗2, h∗3}.

Example 5: As an example, consider the three-tank model
with Y = {h∗1, h∗2, h∗3} that is given by constraints c2–c8 and
the new constraints

h∗2 =
p2 ·K2

A2
(c11)

h∗3 =
p3 ·K3

A3
(c12)

with the causal assignments α2-α8 and the additional causal
assignments:

h∗2 :=
p2 ·K2

A2
(α14)

h∗3 :=
p3 ·K3

A3
. (α15)

Fig. 4 shows the causal graph for the three-tank system with
the selected outputs. Here, X = {p1, p2, p3}, Θ = ∅, Y =
{h∗1, h∗2, h∗3}, U = {Qin}, and A = {ṗ1, ṗ2, ṗ3}. We gener-
ate three minimal submodels, one for each measurement. For
the first minimal submodel, we select U∗ = {Qin, h

∗
2, h
∗
3}

and V ∗ = {h∗1}, for the second one U∗ = {Qin, h
∗
1, h
∗
3}

and V ∗ = {h∗2}, and for the third one U∗ = {Qin, h
∗
1, h
∗
2}

and V ∗ = {h∗3}. The minimal submodels computed by
Algorithm 1 for this example include: for V ∗ = {h∗1},
constraints with causal assignments α2, α5, α8, and

p2 :=
h∗2 ·A2

K2
(α16)

derived from the constraint c11 with the causal assign-
ment α14 (see Fig. 5a); for V ∗ = {h∗2}, constraints with
causal assignments α3, α6, α13, α14, and

p3 :=
h∗3 ·A3

K3
(α17)

derived from the constraint c12 with causal assignment α15
(see Fig. 5b); and for V ∗ = {h∗3}, constraints with causal
assignments α4, α7, α16, and α17 (see Fig. 5c). Note that
constraints and variables can be included in several submod-
els.

Example 6: As a second example, consider the model shown
in Fig. 2 (Y = {h∗1, Q∗12, Q∗3}), using causal assignments α5-
α10 and P = {(h∗1 / Q∗12)}. For this example, we also com-
pute three minimal submodels, one for each measurement.
The minimal submodels computed for this example are: for
V ∗ = {h∗1}, constraints with causal assignments α2, α5, α8,
and α11 (see Figure 6a); for V ∗ = {Q∗12}, constraints with
causal assignments α3, α6, α9, α13, and

p3 := Q∗3 ·R3 (α18)

5



Qin p1 p21p

h1 h2
* *

(a) Causal graph for h∗1 submodel.

p1 p2 p32p

h1 h2 h3
* * *

(b) Causal graph for h∗2 submodel.

p2 p33p

h2 h3
* *

(c) Causal graph for h∗3 sub-
model.

Figure 5. Causal graphs for minimal submodels for estima-
tion of the three-tank system when Y = {h∗1, h∗2, h∗3}.

derived from constraint with causal assignment α10 (see
Figure 6b); and for V ∗ = {Q∗3}, constraints with causal
assignments α3, α6, α4, α7, α10, and α12 (see Figure 6c).
Note that using the preferences P from Example 4 we would
have obtained the submodel whose causal graph is shown
in Fig. 3. Compared to the previous example, where every
submodel has only one state variable, in this example, the
submodel for V ∗ = {Q∗3} includes state variables p2 and p3.

4. MODEL DECOMPOSITION FOR FAULT
ISOLATION

Model decomposition can also be used for the purposes of
fault isolation [1, 6]. Here, residual generators are formed
from the submodels, and the advantage of model decom-
position is that each residual generator will be sensitive to
only the faults in the corresponding submodel. As a result,
diagnosability is improved [14]. In our approach, we attempt
to design local diagnosers based on the submodels that can
independently, without communication, generate globally
correct fault isolation results [7].

For a given system model M, we define a set of faults
F . In this work, we assume that this set of faults can be
represented as abrupt, persistent changes in the parameters
Θ of the system model. For a given fault isolation algorithm
and output set Y , distinguishability of a fault fi from another
fault fj refers to the notion that the isolation algorithm can, if
fi occurs, eliminate fj from consideration. We denote this as

Qin p1 p21p

h1
  * Q12

  *

(a) Causal graph for h∗1 submodel.

h1
  *

p1 p2 p3

Q12

2p

Q3
   *  *

(b) Causal graph for Q∗12 submodel.

p1 p2 p32p 3p

Q3
   *Q12

  *

(c) Causal graph for Q∗3 submodel.

Figure 6. Causal graphs for minimal submodels for estima-
tion of the three-tank system when Y = {h∗1, Q∗12, Q∗3} and
P = {(h∗1 / Q∗12)}.

Qin p1 p2 p31p 2p 3p

h1 h2 h3

R1 R2 R3R12 R23

  *   *   *K1 K2 K3

Figure 7. Causal graph of the three tank system including
fault parameters.

fi �Y fj . Diagnosability is generally defined as follows.

Definition 5 (Diagnosability) A modelM with faults F and
outputs Y is diagnosable with a given fault isolation algo-
rithm if and only if (∀fi, fj ∈ F )fi 6= fj =⇒ fi �Y fj .

Example 7: As an example, consider the three-tank model
where tank heights are measured (see Example 5 in Sec-
tion 3). In this case, we make the system parameters explicit,
so Θ = {K1, R1, R12, K2, R2, R23, K3, R3}, and consider
faults that are represented as increases in the resistances
and decreases in the capacitances (denoted using K−i , R+

i ,
and R+

ij). The causal graph for this model is shown in
Fig. 7. As the fault isolation algorithm we use the QED
(Qualitative Event-based Diagnosis) approach [15, 16]. In
this approach, for each fault we generate a list of symbolic

6



fault signatures, representing magnitude (first symbol) and
slope (second symbol) changes in the residuals associated
with measurements [2] (where + indicates an increase, -
indicates a decrease, and 0 indicates no change), and relative
measurement orderings, representing the sequential order
of residual deviations within a submodel in response to a
fault [15]. Table 1 shows the signatures and orderings for
the three-tank system. Here, ry refers to the residual for
output y, and an ordering ry1 ≺ ry2 means that ry1 will
deviate before ry2 . Also, a + superscript indicates an increase
and a − superscript indicates a decrease in the parameters.
This model is diagnosable because for each pair of faults, the
combination of signatures and orderings is different.

Fault rh∗1 rh∗2 rh∗3 Measurement Orderings
K−1 +- 0+ 0+ rh1 ≺ rh2 , rh1 ≺ rh3 , rh2 ≺ rh3

R+
1 0+ 0+ 0+ rh1 ≺ rh2 , rh1 ≺ rh3 , rh2 ≺ rh3

R+
12 0+ 0- 0- rh2 ≺ rh3

K−2 0+ +- 0+ rh2 ≺ rh1 , rh2 ≺ rh3

R+
2 0+ 0+ 0+ rh2 ≺ rh1 , rh2 ≺ rh3

R+
23 0+ 0+ 0- rh2 ≺ rh1

K−3 0+ 0+ +- rh2 ≺ rh1 , rh3 ≺ rh1 , rh3 ≺ rh2

R+
3 0+ 0+ 0+ rh2 ≺ rh1 , rh3 ≺ rh1 , rh3 ≺ rh2

Table 1. Fault signatures and relative measurement
orderings for the global model of the three-tank system.

We splitM into submodelsMi. We partition the fault set F
into subsets Fi, one for each submodel. We are interested in
the property of global diagnosability [17].

Definition 6 (Global Diagnosability) A submodel Mi of
modelM, with faults Fi ⊆ F , is globally diagnosable with
a given fault isolation algorithm if (∀fi ∈ Fi, fj ∈ F )fi 6=
fj =⇒ fi �Yi fj .

In other words, a submodel is globally diagnosable if the fault
isolation algorithm can distinguish all local faults (in Fi) from
all other possible faults (both local and nonlocal, i.e., in F )
using only its local outputs. If a local fault occurs, then the
fault isolation algorithm will know exactly the fault (because
it is distinguishable from all other local faults). If a nonlocal
fault occurs, the algorithm will know only that the fault is
not local (since all local faults are distinguishable from all
nonlocal faults). If we design the submodels such that they
are all globally diagnosable for their given Fi and Yi, then we
guarantee that the local fault isolation results will be globally
correct. When a fault occurs, exactly one local diagnoser will
know exactly the fault and all other diagnosers will know the
fault is nonlocal.

Example 8: Consider still the three-tank system where
heights h∗1, h∗2, and h∗3 are measured. We partition the fault
sets into F1 = {K−1 , R

+
1 , R

+
12}, F2 = {K−2 , R

+
2 , R

+
23},

and F3 = {K−3 , R
+
3 }. Consider M1 created using U∗ =

U ∪ {h∗2, h∗3} and V ∗ = {h∗1}, so the only residual will be
h∗1. As observed in Table 1, the submodel is not globally
diagnosable, because R+

1 and R+
12 both produce 0+ (smooth

increase) on rh∗1 . Consider now M1 created using U∗ =
U ∪ {h∗3} and V ∗ = {h∗1, h∗2}. Now, faults not in F1 are
included in the submodel (namely, K−2 , R+

2 , R+
23), so they in

addition to the local faults (in F1) may affect the residuals.
If we do not consider measurement orderings, the submodel
is not globally diagnosable, because a local fault, R+

1 , and

Algorithm 3 Globally Diagnosable Submodel Design
Input: S = {Si = (Fi, Yi,Mi) : i = 1, . . . , n},M, P
for all Si ∈ S do

while Si not globally diagnosable do
Sy ← ∅
for all y ∈ Y − Yi do

Y ′i ← Yi ∪ {y}
M′i ← GenerateSubmodel(M, U ∪ (Y −
Y ′i ), Y ′i , P )
S′i ← (Fi, Y

′
i ,M′i)

end for
Si ← arg min

S′i∈S
GD(F, S′i)

end while
end for

a nonlocal fault, R+
2 , produce the same effects on the two

residuals, rh∗1 and rh∗2 . If we do consider measurement
orderings, however, the submodel is globally diagnosable,
because although we observe the same effects on the residuals
for those two faults, the effects appear in a different temporal
sequence (R+

1 affects rh∗1 first whereas R+
2 affects rh∗2 first).

An algorithm for designing globally diagnosable submodels
is shown as Algorithm 3 (generalized from [7]). An initial
submodel design is given, in which for Yi, the submodel is
defined as Mi = GenerateSubmodel(M, U ∪ (Y −
Yi), Yi, P ), where P is the (given) set of preferences. The
fault set partition and initial measurement sets are provided
by the user. We denote the tuple (Fi, Yi,Mi) using Si. Here
we define a function GD(F,Si) that returns the number of
faults in Fi that are not globally distinguishable from those in
F .

The algorithm implements a greedy solution that works as
follows. For each submodel, we try adding one new output
at a time until the submodel becomes globally diagnosable.
For each new output that we try to add, we determine how
much it improves the global diagnosability (using GD), and
whichever one improves it the most (by minimizing GD) is
added. We then continue by trying to find the next best output
to add. This loop completes when global diagnosability
is attained, which in the worst case will occur when all
outputs are added. This assumes that the global model is
diagnosable; if it is not, then we can group indistinguishable
faults as a single aggregate fault [17] to make the system
diagnosable (a diagnosis of the aggregate fault is interpreted
as an ambiguity between the indistinguishable faults). If the
worst case is achieved, this essentially means that the fault
isolation problem is not decomposable for the given model,
fault set, and fault isolation algorithm.

Example 9: Consider again the scenario given in Example 8,
where the tank heights are measured and the fault set is par-
titioned into F1 = {K−1 , R

+
1 , R

+
12}, F2 = {K−2 , R

+
2 , R

+
23},

and F3 = {K−3 , R
+
3 }. We createM1 using Y1 = {h∗1},M2

using Y2 = {h∗2}, andM3 using Y3 = {h∗3}. Applying the
design algorithm, we find that the first submodel is extended
to include h2, the second is extended to include h3, and the
third does not need to be extended. The corresponding causal
graphs are shown in Fig. 8. As discussed in Example 8,M1
is not diagnosable using only Y1 = {h∗1}. The case is similar
for M2, which is not diagnosable using only Y2 = {h∗2}.
However, M3 using Y3 = {h∗3} is globally diagnosable,
because K−3 and R+

3 produce different effects on rh∗3 , and
there are no nonlocal faults included in the submodel (see
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Qin p1 p2 p31p 2p

h1 h2 h3

R1 R2R12 R23

  *   *   *K1 K2

(a) Causal graph for isolation submodel for {K−1 , R+
1 , R+

12}.

p1 p2 p32p 3p

h1 h2 h3

R2 R3R12 R23

  *   *   *K2 K3

(b) Causal graph for isolation submodel for
{K−2 , R+

2 , R+
23}.

p2 p33p

h2 h3

R3R23

  *   *K3

(c) Causal graph for isolation
submodel for {K−3 , R+

3 }.

Figure 8. Causal graphs for isolation submodels for the
three-tank system.

Fig. 8c). For M1, if we add h∗2 (Fig. 8a), in which R+
1 ,

R+
12 produce different effects, the submodel now becomes

globally diagnosable (as discussed in Example 8). ForM2,
if h∗3 is added the case is similar and the submodel becomes
globally diagnosable.

5. MODEL DECOMPOSITION FOR
PREDICTION

In the context of SHM, prognostics deals with predicting the
time at which a component, subsystem, or system will no
longer satisfy desired performance constraints. For example,
we may want to predict when a battery will discharge [18],
when a valve will no longer open within required time lim-
its [19], or when a crack grows to an unacceptable size [20].
The time at which this event occurs is known as end of life
(EOL) and the time until that point is known as remaining
useful life (RUL).

The desired performance is expressed through a set of nc con-
straints, CEOL = {ci}nci=1, where ci describes the mapping
of a given point in the joint state-parameter space given the

current inputs to a variable ei ∈ {0, 1}, where 1 means the
performance requirement is satisfied and 0 means it is not sat-
isfied, and we say the system has no useful life remaining. In
model-based prognostics [3], the system model is augmented
to include these constraints, i.e., forM = (V,C),CEOL ⊂ C
and the ei variables are included in V (as auxiliary variables
in A). The causality of these constraints is always fixed
such that for constraint ci, the causal assignment takes the
following form:

ei := fci(v1, v2, . . . , vm), (α19)

where {v1, v2, . . . , vm} = Vc1 , and fci is a function evaluat-
ing the performance requirement.

These individual constraints may be combined into a single
system-level threshold function TEOL : Rnx×Rnθ ×Rnu →
B, defined as

TEOL(x(t),θ(t),u(t)) ={
1, 0 ∈ {fci(x(t),θ(t),u(t))}nci=1

0, otherwise.

That is, TEOL evaluates to 1, i.e., the system has reached
an unacceptable region of behavior, when any one of the
constraints are violated. EOL is then defined as

EOL(tP ) ,

inf{t ∈ R : t ≥ tP ∧ TEOL(x(t),θ(t),u(t)) = 1},

i.e., EOL is the earliest time point at which TEOL is met
(evaluates to 1). RUL is expressed using EOL as

RUL(tP ) , EOL(tP )− tP .

Example 10: Consider the three-tank system given by causal
assignments α2-α4 as well as the following causal assign-
ments:

ṗ1 :=
1

K1
(Qin −Q1 −Q12) (α20)

ṗ2 :=
1

K2
(Q12 −Q2 −Q23) (α21)

ṗ3 :=
1

K3
(Q23 −Q3) (α22)

Q1 :=
p1
R1

(α23)

Q2 :=
p2
R2

(α24)

Q3 :=
p3
R3

(α25)

Q12 := u12
p1 − p2
R12

(α26)

Q23 := u23
p2 − p3
R23

(α27)

Here, u12 and u23 are the positions of valves on the connect-
ing pipes. Note also that we include auxiliary variables for the
flows out of and between the tanks. The model is augmented
with the EOL constraints and the associated variables:

e1 := (p1 > p−) (α28)

e2 := (p2 > p−) (α29)

e3 := (p3 > p−) (α30)

8



Qin p1 p2 p3Q231p 2p 3pQ12

Q1 Q3u12 u23Q2e1 e2 e3

Figure 9. Causal graph for global three-tank prediction model.

where p− is the minimum allowable tank pressure. Here,
X = {p1, p2, p3}, Θ = ∅, U = {Qin, u12, u23}, Y = ∅,
and A = {ṗ1, ṗ2, ṗ3, e1, e2, e3}. The corresponding causal
graph is shown in Fig. 9.

By decomposing the global model into local submodels, we
can decompose the prediction problem [9]. For each c ∈
CEOL, we create a local submodel that can evaluate that
constraint. Since TEOL is reached when any single c ∈
CEOL is violated, this time point can be computed by taking
the minimum of the local EOLs corresponding to the local
performance constraints. For decomposition, we must define
a set of local inputs. For prediction, the set of available local
inputs is denoted as UP ⊂ V . Here, UP is a set of variables
whose future values (or a distribution of future values) can be
hypothesized. Note that since we do not have access to future
sensor readings, V does not include any output variables.

The submodels are generated as follows. For each c ∈ CEOL,
we set Mc ← GenerateSubmodel(M, UP , vc,∅).
(Here, the preferences list P is not needed since there are
no outputs.)

Example 11: To perform prediction in the three-tank system,
we need to assign some variables to be in UP , the set of
variables that can be predicted a priori. First, assume that
UP consists of only U , which in this case is {Qin, u12, u23}.
We generate three submodels, one for each EOL constraint.
Using the decomposition algorithm for the prediction prob-
lem, we find we cannot decompose the global model.3 To
compute any single pressure we need to compute also the
other pressures. That is, each submodel has constraints
with causal assignments α2-α4 and α20-α27 with the EOL
constraint for that submodel. In this case, it makes sense to
simply use the global model (shown in Fig. 9) to compute all
three constraints.

Example 12: Now assume that the valves on the connecting
pipes are controlled so as to always ensure a constant desired
flow through them. In this case, because Q12 and Q23 are
controlled to a known value, their values are known a priori
and they can be used as local inputs. So, here, UP =
U∪{Q12, Q23}. Now, the decomposition algorithm generates
three submodels without overlap. The first submodel uses
Qin and Q12 as local inputs, and includes α2, α20, α23 and
α28. Similarly, the second submodel has only the constraints
for the second tank, and the third submodel has only those for
the third tank. The corresponding causal graphs are shown in
Fig. 10.

3When U∗ ∩ Y = ∅, Algorithm 1 simplifies significantly, because in
Subroutine 2, there is only ever one constraint to consider, which is the one
that in the current causal assignment computes the variable v.

Qin p11p Q12

Q1 e1

(a) Causal graph for prediction submodel for
e1.

p2 Q232pQ12

Q2 e2

(b) Causal graph for prediction submodel for
e2.

p3Q23 3p

Q3 e3

(c) Causal graph for prediction
submodel for e3.

Figure 10. Causal graphs for prediction submodels for the
three tank system.

6. RELATED WORK
Several techniques have been proposed for off-line system
model decomposition in model-based diagnosis: Analyti-
cal Redundancy Relations (ARRs) [21], Possible Conflicts
(PCs) [6], Potential Conflicts [22], Minimal Structurally
Overdetermined sets of equations (MSOs) [23], among oth-
ers. All of them are capable of finding the whole set of
overdetermined equations in the system model, thus con-
taining enough redundancy to perform fault detection and
isolation. The main difference between these approaches
comes in the usage of causality information. ARRs and
MSOs consider only structural information, i.e., relations
between equations and variables in the model. Possible
Conflicts introduce causal information and thus identify those
submodels that could be computed. The four approaches have
been compared in [24], finding out that they are equivalent
from a structural point of view. Once causality is introduced,
the equivalence can be extended to minimal conflicts [25],
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which is an on-line technique for computing the source of
actual discrepancies in a system, which also induces a model
decomposition.

The approach presented in this paper is more similar to the
Possible Conflicts approach than the ARRs and MSOs ap-
proaches, since we perform the decomposition by assuming
a causal assignment in the model. However, important dif-
ferences arise between the proposed framework and the PCs
approach. The most important is related with the applicability
of our generalized framework to solve different SHM prob-
lems. While PCs only decompose the system model into min-
imal submodels for estimation, isolation, and identification
purposes, our generalized framework also allows to generate
minimal submodels for prediction. Also, since we base our
decomposition process on a causal model, the algorithm pre-
sented here is much more efficient to decompose the problem
than the PCs algorithm, which computes evaluable models
for all potential causality assignments. Another important
difference is the existance and the usage of P , which can be
used to drive the decomposition process and does not exist
in the PCs approach. Also, our approach generates multi-
output submodels, while the PC-based algorithm generates
only single-output submodels.

Other approaches have been proposed in the literature for
structural model decomposition, but all of them have been
developed to provide submodels for a particular SHM func-
tion. For example, Williams and Millar presented Moriarty
[26], an approach for decomposing a system model into
smaller hierarchically organized subsystems. Their decom-
position approach generates minimal subsets of equations for
estimation from a system mode, and has been applied for
parameter estimation, but cannot be used to generate isolation
and prediction submodels. Lunze and Schiller [27] presented
an approach that, similar to our proposal, uses causal graphs
associated to over-constrained systems, however, their ap-
proach has only been applied to perform fault diagnosis.
More recently, Nyberg [28] proposed a general framework for
model-based diagnosis based on structural hypothesis tests,
which could be considered as a generalization of structural
analysis in the decision theory field.

7. CONCLUSIONS
In this paper, we presented a general model decomposition
framework, and showed how the concept of model decom-
position is pervasive to different SHM methodologies, such
as estimation, fault isolation, and prediction. We described
the role that model decomposition plays in three specific
approaches to estimation, isolation, and prediction, and pre-
sented how the different model decomposition problems for
these different approaches can be solved within our common
framework.

Our model decomposition framework assumes that a single
causal assignment exists to the global model that leads to
a model that can be implemented and simulated, assum-
ing integral causality. Future work will address derivative
causality and algebraic loops. In hybrid systems, the causal
assignment can change depending on the system mode, and
future work will deal with this aspect as well. Another impor-
tant consideration for model decomposition when applied to
estimation and fault isolation, as shown in those sections, is
that the quality of the decomposition depends on the available
sensors. Therefore another design aspect is choosing the right
set of sensors to get the best model decomposition. We will

consider also the extension to the decomposition algorithm to
handle auxiliary variables more generally as discussed at the
end of Section 2.
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[23] M. Krysander, J. Åslund, and M. Nyberg, “An efficient
algorithm for finding minimal over-constrained sub-
systems for model-based diagnosis,” IEEE Trans. on
Systems, Man, and Cybernetics, Part A, vol. 38, no. 1,
2008.

[24] J. Armengol, A. Bregon, T. Escobet, E. Gelso,
M. Krysander, M. Nyberg, X. Olive, B. Pulido, and
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