
Autonomous Decision Making for Planetary Rovers
Using Diagnostic and Prognostic Information

Sriram Narasimhan ∗ Edward Balaban ∗∗ Matthew Daigle ∗∗
Indranil Roychoudhury ∗∗∗ Adam Sweet ∗∗ Jose Celaya ∗∗∗ Kai Goebel ∗∗

∗ University of California, Santa Cruz, NASA Ames Research Center,
Moffett Field, CA, 94035, USA

E-mail: sriram.narasimhan-1@nasa.gov
∗∗ NASA Ames Research Center, Moffett Field, CA, 94035, USA

∗∗∗ SGT Inc., NASA Ames Research Center, Moffett Field, CA, 94035, USA

Abstract: Rover missions typically involve visiting a set of predetermined waypoints to perform
science functions, such as sample collection. Given the communication delay between Earth and the
rover, and the possible occurrence of faults, an autonomous decision making system is essential to
ensure that the rover maximizes the scientific operations performed without damaging itself further or
stalling. This paper presents a modular software architecture for autonomous decision making for rover
operations that uses diagnostic and prognostic information to influence mission planning and decision
making to maximize the completion of mission objectives. The decision making system consists of
separate modules that perform the functions of control, diagnosis, prognosis, and decision making. We
demonstrate our implementation of this architecture on a simulated rover testbed.

Keywords: autonomous decision making, diagnosis, prognosis, planetary rover.

1. INTRODUCTION

Planetary rovers are designed to perform science investigation
on the surface of celestial objects. Typically, rovers receive a
new set of instructions at the beginning of each day. Sent from
the scientists and engineers on Earth, the command sequence
tells the rover which waypoints to go to and which science
experiments to perform. Given the communication time delay
between Earth and the rover (e.g., about 20 minutes for Mars),
it is not possible to respond to rover events quickly . When an
unexpected situation is encountered, e.g., a fault, the rover goes
into safing mode, stopping and waiting for instructions from
Earth. The ground engineers have to then gather sensor data
from the rover to determine its current state and provide a new
set of instructions. This whole process might take up to a few
days while the rover is idle, costing time and money and losing
mission value.

Therefore, a decision making (DM) system that takes a set of
waypoints and autonomously decides the order of waypoint
traversal while taking into account the health of the different
components of the rover can be of immense value to rover
operations. In this paper, we develop an integrated DM architec-
ture that incorporates low-level control, diagnosis, prognosis,
and decision making algorithms within a single framework for
autonomous DM. The diagnosis and prognosis algorithms are
not only necessary to maintain vehicle safety and performance
by determining whether a vehicle component is failing and
predicting how long it will take for it to fail completely; but
also to use that information to suggest actions to optimize
vehicle maintenance, ensure mission safety, and extend mission
duration. Faults and damage progression may require changes
to controller gains or switching of control laws, changes to the
usage of the system or its components, and/or changes to the
mission plan.

We plan to use the K11 rover at NASA Ames Research Center
that was originally slated to serve as a robotic technologies test
vehicle in the Antarctic (Lachat et al., 2006) to test, verify and
validate our architecture (Balaban et al., 2011). In this paper,
however, we focus on the overall approach, and demonstrate it
instead on a simulation testbed of the rover, describing some
interesting fault scenarios. The software simulator allows for
rapid validation of autonomy algorithms. The main contribution
of this work is the integrated architecture and protocols for how
the different components of the architecture interact. Hence, we
select some algorithms which have been developed in previous
work and only briefly describe how the algorithms work and
how they are applied to the rover.

The paper is organized as follows. Section 2 describes the rover
hardware and the simulation testbed. Section 3 describes the
integrated DM architecture and the selected technologies for
the architecture, including control, diagnosis, prognosis, and
decision making. Section 4 provides some example scenarios
demonstrating the integration of diagnosis, prognosis, and de-
cision making on the simulation testbed. Section 5 concludes
the paper.

2. TESTBED

The K11 rover is about 1.4 m long by 1.1 m wide by 0.63 m tall.
Each wheel is driven by an independent 250 W graphite-brush
motor, connected through a bearing and gearhead system, with
its motor controlled by a single-axis digital motion controller.
An onboard laptop executes the motor control software, per-
forms data acquisition, and runs the reasoning algorithms. The
sensors include a GPS receiver, gyroscope, a still and video
camera, and a compass, as well as current, temperature, and
wheel speed sensors. The rover software includes the navi-
gation software, middleware, and telemetry software. Further



(a) Generalized rover coordinates. (b) Rover forces.

Fig. 1. Rover coordinates and forces.

details about the K11 rover testbed are described in (Balaban
et al., 2011).

The simulation testbed is developed from a physics-based
model of the hardware testbed. The model assumes that
the rover consists of a symmetric rigid frame with four
independently-driven wheels. Generalized rover coordinates
are shown in Fig. 1(a). The subscripts F ,B,L, andR subscripts
stand for “front”, “back”, “left” and “right”, respectively. The
rover pose is given by (x, y, θ). The independent dynamic
variables describing the motion include the body longitudinal
velocity v, the body rotational velocity ω, and the wheel ro-
tational velocities ωFL, ωFR, ωBL, and ωBR. Note that the
body velocities and wheel velocities are independent due to the
presence of slip, as explained below.

The rover experiences forces opposing movement in both lon-
gitudinal and rotational directions (see Fig. 1(b)). For a wheel
w, when the longitudinal velocity of the rover is equal to that of
a wheel, then there is no slip and no force. Otherwise, some
amount of slip is present and the difference in the relative
velocities produces a ground force Fglw that pushes the wheel
w along the ground. These forces are transmitted to the rover
body, moving it in the longitudinal direction. The Fglw forces
produce torques on the rover body, producing a rotation that is
opposed by additional friction forces Fgrw. The friction forces
are defined as Fglw = µgl(vw − v) and Fgrw = µrω, where
µgl and µr are friction coefficients for the translational and
rotational movements of the rover, respectively. Note that µgl
and µr are not in the same units. The Fgrw forces, opposing
the rotation, act at a right angle from the diagonal going from
the robot center to the wheel, and in the direction that opposes
the rotation. The forward component of this force affects the
forward velocity of the rover, just as the component of a Fglw
force perpendicular to the diagonal affects the rotational veloc-
ity. The angle γ is given by γ = arctan l

2b , where l is the length
of the rover, and b is half the width of the rover.

For a given wheel w on the left side, the rotational velocity is
described by

ω̇w =
1

Jw
(τmw − τfw − rwFglw + rwFgr cos γ) ,

and on the right side as

ω̇w =
1

Jw
(τmw − τfw − rwFglw − rwFgr cos γ) .

A friction torque existing between a wheel w and the axle and
motor produces the counter-torque τfw = µwω.

The forward velocity is described by

v̇ =
1

m
(FglFL + FglFR + FglBL + FglBR) ,

assuming that µr is the same for all wheels. The rotational
velocity is described by

ω̇ =
1

J
(d cos γFglFR + d cos γFglBR − d cos γFglFL

− d cos γFglBL − 4dFgr).

Note that the Fgl forces are at distance d from the rover center
with the perpendicular component at angle γ. The cos γ factor
projects the force onto the tangent of the rotation.

The wheel motors are DC motors with PID control is used. The
DC motor model for wheel w is given by

dimw
dt

=
1

L
(Vw − imR− kωωw),

where Vw is the motor voltage provided by the controller, L
is the motor inductance, R is the motor resistance, and kω
is an energy transformation term. The motor torque, τmw, is
described by the relationship τmw = kτ imw, where kτ is an
energy transformation gain.

The motors windings are designed to withstand temperatures
up to a certain point, after which, the insulation breaks down,
the windings short, and the motor fails. This defines an EOL
criterion for the motors. The motor temperatures must remain
below this critical temperature. The motor thermocouple is
located on the motor surface. The surface loses heat to the
environment and is heated indirectly by the windings, which,
in turn, are heated up by the current passing through them. The
temperature of the windings is given by

Ṫw = 1/Jw
(
i2R− hw(Tw − Tm)

)
,

where Jw is the thermal inertia of the windings, hw is a heat
transfer coefficient, and Tm is the motor surface temperature
(Balaban et al., 2011). It is assumed that heat is lost only to the
motor surface, and that winding resistance R is approximately
constant for the temperature range considered. The surface
temperature is given by

Ṫm = 1/Js(hw(Tw − Tm)− ha(Tm − Ta))

where Js is the thermal inertia of the motor surface, ha is a heat
transfer coefficient, and Ta is the ambient temperature. Heat
is transferred from the windings to the surface and lost to the
environment.

The batteries are modeled using an electric circuit equivalent
model that includes a large capacitance in parallel with a resis-
tance, together in series with another resistance. The batteries
are at 48 V fully charged, and end-of-discharge (which deter-
mines an end-of-life criterion for the rover) occurs at 38.4 V.

We incorporate several faults into the model. A motor friction
fault in wheel w is represented by an increase in the motor
friction coefficient µw. A parasitic load is also considered
that drains an additional current from the batteries. Bias and
drift faults in sensors are considered as well, and these are
represented as additive terms on the sensor equations.

3. INTEGRATED DECISION MAKING ARCHITECTURE

A typical rover mission consists of visiting and performing
desired scientific operations at a set of predetermined waypoints
{(xi, yi), ri}Ni=1, where ri is the reward associated with way-
point (xi, yi). An autonomous DM system for the rover deter-
mines the order to visit the waypoints and the speed vi to travel



Fig. 2. Integrated decision making architecture, where k denotes the time index.

between them, so as to maximize the reward while minimizing
the power used and health deterioration. When diagnostic and
prognostic information is available, the decision making system
may alter the waypoint list (reduce and/or reorder) to mini-
mize the impact of the faults and their progression over time.
Fig. 2 presents the integrated decision making architecture,
which consists of four main components, namely (i) low-level
control (LLC), (ii) diagnosis (DX), (iii) prognosis (PX), and (iv)
decision making (DM).

The LLC is responsible for guiding the rover to the current
waypoint, wk = {(xk, yk), vk}, by commanding individual
wheel velocities to be vk at time k. The rover is a skid-steered
vehicle, i.e., its wheels cannot be steered and the rover is rotated
by commanding the wheel speeds on the left and right sides to
different values. The low-level controller needs to be robust to
drive-system faults, therefore, it receives the current diagnosis
Fk from the DX algorithm.

The DX module takes in the inputs uk and sensor data zk,
and reasons about faults in the system. It runs continuously,
trying to detect when a fault occurs, isolate the underlying faults
or failures, and identify the magnitudes of the faults. When
a diagnosis Fk is available, it is passed on to the LLC, for
mitigation, and the PX module, which uses this information as
a starting point to predict how the fault will progress.

The PX module continuously estimates the health state of the
rover and obtains remaining useful life (RUL) predictions,
RULk. RUL is the time until the system violates functional
or performance criteria. The RUL prediction is conditional on
the future usage of the rover, determined by the waypoint list.

The DM module is responsible for planning under nominal
and faulty conditions. At the mission start, the DM gets a
list of N desired waypoints along with associated rewards for
visiting them {(xi, yi), ri}Ni=1. The DM also has a terrain map
M that describes the geographical layout of the terrain in
which the waypoints are located. The DM then, based on the
predicted power usage and RUL predictions received from the
PX, determines an ordered list of waypoints. Many different
protocols may be implemented for when the DM is called. For
example, the DM may be run periodically to adjust for any
errors, or it may be called after each waypoint is reached.

In our implementation each of the constituent modules of
our integrated DM architecture utilizes one or more types of
reasoning algorithms. These algorithms are listed and briefly
described in the rest of this section.

3.1 Low-level Control

Proportional Control Given the next waypoint and the de-
sired cruise speed, the controller sets the average wheel velocity

to achieve the desired cruise speed. It then implements a propor-
tional control based on the difference between the current and
desired heading, and adjusts the desired speed of the left and
right sides to turn toward the waypoint:

v∗L = v∗ − Pθeθ,
v∗R = v∗ + Pθeθ,

where the superscript ∗ indicates a commanded value, Pθ is the
proportional gain, and eθ is the heading error.

Differential Speed Normally, the desired velocity of the front
and back wheels is equal to the desired speed for that side of the
rover. However, if a motor friction fault is present on that side,
then it is more efficient overall to increase the desired velocity
of the good wheel and decrease the velocity of the faulty wheel.
The amount of change depends on the magnitude of the friction
fault. For a given side of the rover S, the good and faulty wheel
speeds are determined as:

v∗FS = v∗S2
/(

1 + β
α

)
,

v∗BS = v∗S2
/(

1 + α
β

)
,

where α = 1/(1+µ′wF ), β = 1/(1+µ′wB), v∗S = (v∗F +v∗B)/2,
and µ′ indicates the difference between the faulty value of µ
and the nominal value. These equations assume that at most one
motor is faulty on each side. We refer to this as robust control.

3.2 Diagnosis

QED The Qualitative Event-based Diagnosis (QED) algo-
rithm, described in (Daigle and Roychoudhury, 2010), utilizes
a qualitative diagnosis methodology that isolates faults based
on the transients they cause in system behavior, manifesting as
deviations in residual values (Mosterman and Biswas, 1999).
Transients produced by faults are abstracted using qualitative
+ (increase), - (decrease), and 0 (no change) values to form
fault signatures. Fault signatures represent these measurement
deviations from nominal behavior as the change in magnitude
and the first nonzero derivative change. These symbols are com-
puted from the residuals using symbol generation. In addition
to signatures, QED captures the temporal order of measure-
ment deviations, termed relative measurement orderings. The
predicted fault signatures and measurement orderings can be
computed manually or automatically from a system model. The
predicted signatures and orderings are compared with observed
signatures and orderings in order to isolate faults. The combi-
nation of signatures and orderings establishes an event-based
fault isolation framework.

QED uses the model of the rover described in Section 2to
derive fault signatures and measurement orderings. Algebraic
functions computing fault magnitudes are derived and used for
fault identification.



HyDE The Hybrid Diagnosis Engine (HyDE) is a consis-
tency based diagnosis engine that uses hybrid and stochastic
models and reasoning (Narasimhan and Browston, 2007). Users
build models of constituent components of the system being
diagnosed and then compose the system model by defining
the connections between the various components. Component
models include the discrete modes the components could be in
and the behavior of the component in these different modes.
Faults are modeled as additional discrete modes of operation of
the components, and transitions from the nominal mode to one
of these fault modes indicates the occurrence of the fault. At any
point in time, HyDE maintains a set of candidates that offer al-
ternate possible states of the system that are consistent with the
sensor observations seen so far. When additional observations
are available, this candidate set is updated by pruning inconsis-
tent candidates and adding new candidates. Several parameters
are available to adjust the performance of the diagnosis engine
including heuristics to determine the ranking of different can-
didates and the kind of simulation to use.

The rover HyDE model was developed directly from the sim-
ulation model, with components and equations in one-to-one
correspondence with it. Fault modes were added for all sensors,
motor friction, and battery parasitic loads.

3.3 Prognosis

Model-based Prognosis We use a model-based prognosis
paradigm in which prognosis consists of two steps: (i) health
state estimation, which computes a joint state-parameter esti-
mate p(x(k),θ(k)|z(0 :k)), where x is the state vector and θ
is the unknown parameter vector, and (ii) prediction, which
simulates the model forward from a given health state out to
the end-of-life (EOL) threshold, based on hypothesized future
inputs to the system (Daigle and Goebel, 2011). The prediction
module is invoked at time kP to predict RUL of the system
(or, alternatively, end of life (EOL)). Specifically, using the cur-
rent joint state-parameter estimate, p(x(kP ),θ(kP )|z(0 :kP )),
which represents the most up-to-date knowledge of the system
at time kP , the goal is to compute p(RUL(kP )|z(0 :kP ). The
general approach to solving the prediction problem is through
simulation. The state-parameter distribution is sampled, and
each sample is simulated forward to EOL to obtain the com-
plete EOL distribution. Note that we need to hypothesize future
inputs of the system for prediction, since fault progression is
dependent on the operational conditions of the system. The
choice of expected future inputs depends on the knowledge of
expected operational settings. In the case of the rover, the future
inputs are determined by the ordered waypoint list provided by
the DM module.

3.4 Decision Making

Currently, the sample problem for the rover application is
formulated as the following:
Given:
g(π) = {gh(π), ge(π)} Inequality constraints

on available energy and
health

f(π) = {fr(π), fh(π), fe(π)} Objective functions
on cumulative reward,
health, and energy

v = {vr, vh, ve}, (vr, vh, ve ∈
[0, 1])

Optimization prefer-
ences vector

W = {w1, w2, ..., wL} Waypoints to be visited

π = {a1, a2, ..., aM} Policy is defined as a set
of actions

a = {ni, nj}, i ∈ [1, 2, ...L−
1], j ∈ [1, 2, ...L− 1]

An action constitutes a
move between a pair of
waypoints (start and fin-
ish)

a1 = {n1, n1} The first action is a spe-
cial case - start traversal
at node 1

am = {nj , nk}|(am−1 =
{ni, nj}), (i, j, k ∈
[1, 2, ...L]), (m ∈ [2, 3, ...M ])

Any action after the first
one needs to start on the
node where the previous
one finished

Find:
Π∗ A compromise (Pareto)

set of policy solutions
(see, for instance, Deb
(2001))

Two PDM approaches are currently implemented: one based on
dynamic programming principles and the other one on prob-
abilistic principles inspired by Probability Collectives work
(Wolpert, 2006). An exhaustive search method (which is sub-
stantially more computationally expensive) is also implemented
for verification of the other two algorithms.

Dynamic Programming The algorithm uses forward propa-
gation, evaluating the best solution for transitioning from stage
to stage, while assuming optimality of the previously made
decisions. An efficiency index eab = rb/(

∑
cab) is used for

guiding the stage-to-stage decision process, where a and b are
the starting and the ending waypoints, respectively; rb is the
reward value associated with waypoint b; and cab is a tran-
sition cost between a and b. If either health or energy values
become less or equal to zero (or all the nodes are visited), the
forward propagation phase is stopped. The solution path is then
‘backed out’ by traversing the stages in the opposite (right-to-
left) direction, starting with the node associated with the highest
accumulated reward.

Probabilistic Decision Making The probabilistic algorithm
operates on a distribution associated with a set of policy roots
Π′ (a policy root, π′, is an initial segment of a policy π).
The algorithm starts with shorter roots, shaping the probability
distribution associated with them as it picks sample roots to
extend to full policies and evaluate their fitness. The roots
are then extended by one action. To extend the roots, sets of
possible follow-on actions are determined first. In the sample
problem described, each waypoint should be visited once at
the most. Thus, if five waypoints maximum are to be visited,
root π′ = {a1, a2} has Aπ′ = {a3, a4, a5} as the set of
possible follow-on actions. The valid one-action extensions
are then {a1, a2, a3}, {a1, a2, a4}, and {a1, a2, a5}. These
offsping policy roots replace the parent root (π′) in Π′ and
split its probability value evenly. Once the roots reach the
maximum specified length, a Monte-Carlo simulation is ran on
the resulting distribution p(Π′) and the best-performing full-



length policy (according to the objective vector f ) is selected
as the solution.

4. CASE STUDY

This section illustrates a practical implementation of the inte-
grated architecture. The case study presented is that of the rover
starting its mission at a waypoint w0 and attempting to visit, at
an average speed of 0.5 m/s, a set of 10 waypoints, accom-
plishing a scientific objective at each waypoint. As mentioned
previously, a reward value is associated with every waypoint
and the overall objective is to maximize the cumulative reward.
In the absence of system faults, the rover has enough energy
stored in the batteries to visit all of the waypoints. In addition to
this nominal scenario, three fault scenarios are considered: in-
creased motor friction, a parasitic load in the power distribution
system, and a battery voltage sensor fault. In the fault scenarios,
the diagnostic system is expected to detect and identify the
fault mode during the w0 → w1 transition. The decision mak-
ing system is then expected to modify the waypoint traversal
plan taking into account prognostic estimates of future energy
consumption and fault magnitude progression. An a posteriori
estimate of change in these two quantities during the w0 → w1

transition, given the fault diagnosis, is made as well.

4.1 Battery Parasitic Load Fault

As a first scenario, we consider an abrupt parasitic load fault
that draws an additional amount of current from the batteries. A
parasitic current of 0.1 A is injected starting at 50 s. As a result,
the net current increases and the battery voltages decrease in
response to the increased current. No other effects appear, but
the batteries will drain faster and some decision making will
have to be performed to determine if the objectives can still be
met with this increased current draw.

QED detects the fault at 50.4 s with an increase in i, the current
drawn from the batteries. The candidate set reduces to a failure
and friction faults of the motors, the parasitic load fault, and
a bias or drift in the current sensor. At 51.2 s, the change
is determined to be abrupt, eliminating the friction faults and
the drift fault. At 76.15 s, a decrease in the voltage of battery
4 is detected. This eliminates the current sensor fault, since
it would not affect another sensor, and eliminates the motor
failure faults, as these would cause a change in individual
motor currents before a change in voltage (i.e., there is a
relative measurement ordering for these faults expressing this
constraint), thus uniquely isolating the parasitic load fault. The
parasitic current is computed as the difference between the
battery current and the sum of the motor currents, averaged
from the time of detection to the present time. At 51.2 s, the
value of the parasitic current is estimated at 0.127 A. By 100 s,
the estimate is at 0.103 A. HyDE detects the fault at 50.05 and
isolates the fault to either a parasitic load or one of the motors
being in an unknown mode. 1 In addition, HyDE was tested on
a double fault scenario where there is a battery parasitic load
and the battery current sensor is faulty. HyDE is able to use
other sensors to determine this condition. The response is the
same as with the parasitic load fault since sensor faults do not
affect the DM.
1 In the unknown mode, the behavior of the motor is undefined and hence it
could be drawing more current. However, unknown faults are catch-all modes
that should be considered only when no other explanations are available.

Prognosis begins once the fault is identified, determining when
the batteries will reach end-of-discharge with the current mis-
sion plan. The prognosis algorithm reports that the batteries
will reach this point in 3.83 h (as opposed to 4.54 h without
the fault). Continuing at an average speed of 0.5 m/s, the rover
can cover about 6.9 km with the fault (8.2 without the fault).
Since the rover must cover over 6.9 km to cover all waypoints,
mission optimization is required. The DM module estimates
that there will not be enough energy to visit all of the waypoints
and eliminates waypoints 9 and 4 from the plan, reconfiguring
the path to be qs = {1, 6, 3, 5, 2, 8, 10, 7} (see Fig. 3).

4.2 Motor Friction Fault

As a second scenario, we consider a motor friction fault in the
back-left motor. The friction coefficient value is increased by
a factor of 10 at 50 s. As a result, the motor current increases
because its PID controller is still trying to maintain the wheel
speed at the same value. This corresponds to an increase in the
total current drawn from the batteries and an accelerated rate of
discharge (and, thus, decreased RUL). The motor temperature
also rises due to the increased current draw, and this can lead
to an EOL condition of the motor due to the overheating. As a
result, decision making will have to optimize RUL with respect
to battery life and motor health.

QED detects the fault at 50.15 s with an increase in vBL, the
velocity of the back-left wheel. The candidate set reduces to
a failure of the back-left motor, increased friction in the back-
left motor, and a bias or drift in the vBL sensor. At 50.25 s, an
increase in both i and iBL are detected, eliminating the motor
failure fault (which would have decreased the current) and the
faults in the vBL sensor (since they cannot affect any other
sensors), leaving the motor friction fault as the sole candidate.
The friction value is computed using the steady-state wheel
speed equation, averaged from the time of detection to the
present time. At 50.25 the friction value is estimated at 14.7
times its nominal value. By 100 s, the estimate is at 10.1 times
its nominal value. HyDE is also able to diagnose this fault at
50.2. However, HyDE does not support fault identification.

Prognosis begins once the fault is identified. Here, multiple
possible future input trajectories may be assumed that will
help with decision making. The increase in current due to the
fault will cause the batteries to discharge earlier than expected,
and the increase in motor temperature may bring the motor
to its EOL due to overheating. According to the prognosis
algorithm, the overheating event occurs in 1423 s if the rover
continues to travel at the same speed and at 4084 s at 80% speed
(0.4 m/s). At 60% speed (0.3 m/s), the steady-state value of the
temperature is below the motor temperature limit, so the rover
can travel indefinitely without overheating the motor, and EOL
is determined solely by battery end-of-discharge, which ends
up being 6313 s. However, if the differential speed controller
is used, then the overall current draw decreases and motor
overheating can be prevented. Furthermore, less overall current
is drawn from the batteries for the same forward speed of the
rover, resulting in improved RULs of 4283 s at normal speed
(0.5 m/s), 6004 s at 0.4 m/s, and 8897 s at 0.3 m/s.

If the non-robust LLC is used, the DM module considers
traverses with different speeds (0.3, 0.4, and 0.5 m/s) in order
to arrive at the optimal payoff. Traveling at 0.5 m/s does not
allow the rover to visit any of the other waypoints due to high
energy draw. Traveling at 0.4 m/s gets the rover to waypoints



0 1000 2000 3000
0

1000

2000

3000

4000

w0

w1

w2w3

w4

w5

w6

w7

w8

w9w10

x (m)

y
(m

)

Nominal

0 1000 2000 3000
0

1000

2000

3000

4000

w0

w1

w2w3

w4

w5

w6

w7

w8

w9w10

x (m)

y
(m

)

Parasitic Load

0 1000 2000 3000
0

1000

2000

3000

4000

w0

w1

w2w3

w4

w5

w6

w7

w8

w9w10

x (m)

y
(m

)

Motor Friction (Non−robust)

0 1000 2000 3000
0

1000

2000

3000

4000

w0

w1

w2w3

w4

w5

w6

w7

w8

w9w10

x (m)

y
(m

)

Motor Friction (Robust)

Fig. 3. Decision making results. Here, r1 = 4, r2 = 5, r3 = 3, r4 = 2, r5 = 6, r6 = 4, r7 = 10, r8 = 5, r9 = 3, and r10 = 6.

3 and 6, with R(qs)=11. Reducing the speed further to 0.3 m/s
allows the rover to get to a higher-reward (but more difficult to
get to) waypoint 7 instead (R(qs)=14). Consequently, the rover
speed is reduced to 0.3 m/s. Introducing the friction-robust LLC
allows to keep the motor temperature within safe limits at any
of the speeds considered and, due to the reduced power draw,
makes it possible to accomplish longer traverses: qs = {1, 2, 5}
at 0.5 m/s (R(qs)=15); qs = {1, 6, 3, 5} at 0.4 m/s (R(qs)=17);
and qs = {1, 3, 5, 2} at 0.3 m/s (R(qs)=18). Since travel time
is not one of the optimization constraints, the lower speed of
0.3 m/s is therefore selected.

4.3 Voltage Sensor Fault

As a third scenario, we consider a bias fault in the voltage
sensor of battery 1. The bias has a value of 0.5 V and is injected
at 50 s. QED detects the fault at 50.3 s, and, since no other faults
can produce an increase in voltage, only bias and drift faults in
the voltage sensor are valid candidates. At 50.9 s, the change is
determined to be abrupt, isolating the bias fault as the candidate.
The bias value is estimated to be 0.51 V. HyDE is able to detect
a voltage sensor fault on Battery 1 at 50.1. However the HyDE
model does not try to further isolate the fault as a bias or drift.
Here, no prognosis is required, and the rover can still operate
in the presence of the fault once it is identified. Therefore, the
DM module does not need to modify the mission plan and the
execution proceeds as planned.

In all of the above scenarios, the DM algorithms (dynamic
programming, probabilistic, and exhaustive search) produced
the same results. Both dynamic programming and probabilistic
algorithms work well on relatively uncomplicated problems,
however, some of their limitations become evident in more
complex scenarios. A dynamic programming formulation be-
comes more challenging if multi-objective problems are posed,
unless the objective functions lend themselves to aggregation
into a single one. The probabilistic method, on the other hand,
does not guarantee convergence to a global optimum in a finite
amount of time and its ability to get close to the optimum is ob-
viously dependent on the size of the search space. Nevertheless,
it appears to be suited for multi-objective formulations.

5. CONCLUSIONS

During rover operations, when a fault occurs, it may require
changes to low-level control, system usage, or the overall mis-
sion plan. In this paper, we described an integrated architecture
for autonomous decision making, using diagnostic and prog-
nostic information. The architecture is modular and allows dif-

ferent technologies for the LLC, DX, PX and DM modules. We
demonstrated the approach on several scenarios in simulation.

In future work, we plan to further develop each module of the
integrated architecture, and evaluate which algorithms perform
best in each module of the architecture, according to a set of
criteria which will include computation time and robustness to
input noise, among others. PX and DM algorithms will be ex-
tended to better accommodate uncertainty in system modeling
and prognostic predictions, allow handling of multiple degrad-
ing components, and incorporate system parameter/constraint
optimization. The hardware testbed will also be further devel-
oped in order to demonstrate and validate our architecture in
complex real-world scenarios.

ACKNOWLEDGEMENTS

The funding for this research is provided by NASA ARMD
System-wide Safety & Assurance Technology (SSAT) project.

REFERENCES

Balaban, E., Narasimhan, S., Daigle, M., Celaya, J., Roychoud-
hury, I., Saha, B., Saha, S., and Goebel, K. (2011). A mobile
robot testbed for prognostics-enabled autonomous decision
making. In Annual Conference of the Prognostics and Health
Management Society 2011, 15–30.

Daigle, M. and Goebel, K. (2011). Multiple damage progres-
sion paths in model-based prognostics. In Proceedings of the
2011 IEEE Aerospace Conference.

Daigle, M. and Roychoudhury, I. (2010). Qualitative event-
based diagnosis: Case study on the second international
diagnostic competition. In Proc. of the 21st International
Workshop on Principles of Diagnosis, 371–378.

Deb, K. (2001). Multi-Objective Optimization Using Evolu-
tionary Algorithms. John Wiley & Sons, Inc., New York,
NY, USA.

Lachat, D., Krebs, A., Thueer, T., and Siegwart, R. (2006).
Antarctica rover design and optimization for limited power
consumption. In 4th IFAC Symp. on Mechatronic Systems.

Mosterman, P.J. and Biswas, G. (1999). Diagnosis of contin-
uous valued systems in transient operating regions. IEEE
Trans. on Sys., Man and Cybernetics, A, 29(6), 554–565.

Narasimhan, S. and Browston, L. (2007). Hyde - a general
framework for stochastic and hybrid modelbased diagnosis.
In Proc. DX07,, 162–169.

Wolpert, D. (2006). Information theory–the bridge connecting
bounded rational game theory and statistical physics. Com-
plex Engineered Systems, 262–290.


