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Verification and validation (V&V) has been identified as a critical phase in fielding 

systems with Integrated Systems Health Management (ISHM) solutions to ensure that the 

results produced are robust, reliable, and can confidently inform about vehicle and system 

health status and to support operational and maintenance decisions. Prognostics is a key 

constituent within ISHM. It faces unique challenges for V&V since it informs about the 

future behavior of a component or subsystem. In this paper, we present a detailed review of 

identified barriers and solutions to prognostics V&V, and a novel methodological way for 

the organization and application of this knowledge. We discuss these issues within the 

context of a prognostics application for the ground support equipment of space vehicle 

propellant loading, and identify the significant barriers and adopted solution for this 

application. 

Nomenclature 

EOL = End Of Life 

ISHM = Integrated Systems Health Management 

PHM = Prognostics and Health Management 

RUL = Remaining Useful Life 

V&V = Verification and Validation 

I. Introduction 

NTEGRATED Systems Health Management (ISHM) will play a major role in future space missions to ensure 

safe operations while containing mission cost. One element of ISHM that is receiving increased attention is 

prognostics. The importance of the role of prognostics is acknowledged in the term “Prognostics and Health 

Management” (PHM) which is often used synonymously with ISHM. The task of prognostics is to quantify the 

health (or damage) of components or subsystems and – in case an abnormal condition has been detected – to 

estimate the remaining life of the component or subsystem. This functionality will provide advance notice of critical 

information to decision makers, and thus enable them to significantly improve operations.  

This paper discusses a prognostics application for components in launch operations. Some of the underlying 

theoretical concepts are discussed and particular attention is given to verification and validation (V&V). Indeed, 

V&V will be one of the important considerations in gaining acceptance of systems health management in general 

and prognostics in particular. In preparation for this, we have conducted a literature survey pertinent to V&V of 

prognostics. Our aim is to use the information contained in those papers to guide how we will approach V&V for 
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our particular application of prognostics.  Towards this end, we extracted from those papers what we recognized as 

“barriers” to V&V of prognostics, what we recognized as “solutions” to overcome those barriers, and the 

connections between the two. While we do not make a claim for completeness of barriers and solutions found, we 

feel that a major contribution of this paper is the method to break down the V&V problem into manageable portions. 

It should also be noted that the large body of work for V&V outside the PHM domain has not been considered for 

this paper. 

The paper is organized as follows. In Section II, we describe briefly our prognostics application, and the 

challenges to V&V that it introduces. In Section III, we present our method to determining barriers and solutions to 

prognostics V&V, and follow with specific examples of these in Section IV. The application of this method to our 

prognostics application is introduced in Section V, and specific examples follow in Section VI. Conclusions are 

found in Section VII, and listings of the titles of our barriers and solutions are in the Appendix. 

 

II. Setting: Prognostics Application for Components in Launch Operations 

Prognostics deals with forecasting the health state of components and systems, enabling condition-based 

maintenance. The goal of prognostics is to predict when a component can no longer fulfill a desired functional 

requirement. This time point is defined as the end of life (EOL), and the amount of time until that point is defined as 

the component’s remaining useful life (RUL). Over time, components undergo wear and aging and may experience 

fault conditions due to normal usage and environmental factors but also due to abnormal usage stressors and 

environmental stressors. Prognostics is based on analysis of component failure modes and detection of early signs of 

wear, aging, and fault conditions, which are then correlated to damage propagation models to predict future damage 

and EOL. 

We are developing a prognostics application for components used in launch operations of space vehicles. 

Specifically, we are interested in components that comprise the vehicle fueling system, which transfers cryogenic 

propellant from a storage area to the vehicle tank. In this system, we have identified various valves and pumps as 

components that would benefit most from the use of prognostics. We identified the components by focusing on the 

intersection of upfront analytical assignment of degree of fault impact, disruptions observed in past operation, and 

hardware configurations of the present system. Specifically, for the system at hand, we looked at the criticality of 

components, the number of components in operation, the frequency of fault, failure, and maintenance activities, and 

the available sensing capabilities. 

Throughout the paper, we will describe the case of pneumatic 

valve prognostics as our example. These valves are actuated by gas, 

and can use different types of actuators. A normally-closed valve 

with a linear cylinder actuator is depicted in Fig. 1. The valve is 

opened by filling the chamber below the piston with gas up to the 

supply pressure, and evacuating the chamber above the piston down 

to atmospheric pressure. The valve is closed by filling the chamber 

above the piston, and evacuating the chamber below the piston.  The 

return spring ensures that when pressure is lost, the valve will close 

due to the force exerted by the return spring. From looking at known 

failure modes and specific instances of failure modes that have 

actually occurred, we can determine which of these are important to 

capture. For example, leaks may occur at the valve ports or 

internally over the piston, the spring may degrade over time, and 

friction may increase as a result of sliding wear and lubrication breakdown. The only sensors available provide 

discrete valve opened and closed signals, from which only open and close times can be derived. This makes the task 

of prognostics difficult. 

The overall health management architecture is depicted in Fig. 2. Sensor data from the ground systems 

equipment are fed to the user interface and systems control module, which decides how to control the system based 

on user and automatic feedback mechanisms. It also displays results from the health management system, which 

may impact control decisions, for example, if a valve is predicted to reach EOL before loading operations are 

complete, a switch to a redundant path may be planned. The message bus transmits sensor data and commands to the 

health management interface, which packages the diagnosis and prognosis results from the individual modules. The 

prognostics module uses sensor data, commands to perform prognostics, and uses results from the diagnostic module 

to focus the efforts. For example, the prognostics component for the pneumatic valve would receive valve open and 

 
Figure 1. Pneumatic Valve. 
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close commands, and receive measurements indicating when a 

valve is fully opened or closed, as well as the operating pressures 

of the fluid. Estimates of the health of components and component 

EOL and RUL predictions are computed in the prognostics 

component, such as the number of valve cycles until failure. Figs. 3 

and 4 show sample outputs from the prognostics component. In 

Fig. 3, predicted trajectories are shown based on the current 

estimated health state distribution, based on an increase in the 

amount of valve friction. The predictions form a distribution that 

may inform the user as to the future component behavior and 

expected RUL. Figure 4 shows the progression of EOL predictions 

for the case of an internal leak. The probability distributions 

provide a measure of the prediction uncertainty. As time progresses 

and more data are collected, the results become more confident 

about the true EOL.  

Prognostics methods may typically be categorized as either 

data-driven or model-based. Data-driven approaches
1
 use learning 

methods to identify trends and determine EOL and RUL. Such 

methods rely on large amounts of run-to-failure data that are used 

to train the algorithms. In our case, such information is not readily 

available. Instead, we are developing a model-based approach that 

exploits domain knowledge of the system, its components, and how 

they fail in order to provide EOL and RUL predictions
2-4

. The 

underlying physical phenomena are captured in a physics-based 

model that is derived from first principles. The particle filter
5
 is a 

popular algorithm for model-based prognosis
3,4,6

. Particle filters 

approximate the posterior probability distribution of the system 

state as a set of discrete, weighted samples, called particles. The 

system state is augmented to include variables that characterize the 
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Figure 2. Health Management Architecture. 

 

 
Figure 3. Sample trajectory output 

 
Figure 4. Progression of EOL 
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health of the component and the amount of damage present. Although suboptimal, the advantage of particle filters is 

that they can be applied to systems which may be nonlinear and have non-Gaussian noise terms, where optimal 

solutions are unavailable or intractable. Further, they are very flexible and help to manage the various sources of 

uncertainty in prognostics through the use of explicit probability distributions.   

Developing a model-based prognostics approach in the selected system domain raises many significant 

challenges to successful V&V. This entails the construction of both models of nominal operation, but also the 

progression of damage. Model-based approaches require accurate, reliable models to achieve useful predictions. 

However, constructing models in the extremes of cryogenic temperatures is difficult, as such factors may have a 

significant impact on how components age. Complex processes such as cavitation are difficult to model, and their 

effects cannot be ignored. Not only do models need to be validated in nominal operation, for which data are 

typically plentiful, but also in faulty operation, for which data are usually quite rare. For example, gas leaks appear 

often in the valves, but these are typically caught before the valves are used in a launch operation. Even if they occur 

during a launch operation, the evidence may be hidden within the sensor data. In Section V we will examine these 

and other challenges in further detail as they relate to pneumatic valve prognostics. 

III. Gathering and Organizing V&V Information from the Literature 

In preparation for planning V&V of our prognostics application, we began a literature survey to locate 

information that might be used as guidance for how to approach the V&V subject and to extract and record as much 

as possible the information useful to V&V planning. Generally, technical papers were found to be significantly more 

informative than presentation materials. The papers studied in this manner were Refs. 7-13. 

Information was classified into one of two groupings and relationships between the groups were established. 

These groupings were: 

• A group of “Barriers”, i.e., those things mentioned that could (depending on the particular situation) 

get in the way of successful, cost-effective V&V of prognostics. (“Barriers”, “Impediments”, 

“Problems”, “Obstacles”,  and “Risks” could be used synonymously for naming this set of information; 

henceforth we will refer to this set of information as “Barriers”). Each instance of these that we found 

we added to our growing set of Barriers, giving it a short, pithy title (enough to convey the gist of what 

it involves), while recording a more extensive quotation taken verbatim from the source to serve as a 

more thorough explanation, and finally recording the reference to that source. 

• A group of “Solutions”, i.e., those things mentioned that could be done to overcome the 

aforementioned Barrier. (“Solutions”, “Remedies”, “Approaches”, and “Options” could be used 

synonymously for naming this set of information; henceforth we will refer to this set of information as 

“Solutions”). Again, we added each one of these to our growing set of Solutions, giving it a pithy title, 

and recording a lengthier quotation and the reference to the source. 

• Relationships between Barriers and Solutions: typically within the papers the discussion of a Barrier is 

followed shortly thereafter by a discussion of means to overcome that Barrier – in our terms, the 

Solution(s). We recorded this relationship between Barrier and Solution as simple linkage between the 

two. On occasion a prognostics paper describes how a Solution overcomes a Barrier, but its application 

induces some additional Barrier(s), this too is recorded as a linkage between the Solution and the 

Barrier it introduces (taking care to distinguish this kind of Barrier-inducing-linkage from the Barrier-

overcoming linkages).  Other than distinguishing between linkages of Solutions that overcome Barriers 

from Solutions that increase Barriers, we made 

no attempt to differentiate between magnitudes 

of the effect.  

Error! Reference source not found.Fig. 5 shows a 

portion of the connectivity implied by the relationships we 

recorded between barriers and solutions. The row of small red 

circles represent barriers, and the row of small green circles 

solutions. A black line connecting solution to barrier indicates 

we recorded the solution as overcoming the barrier, and a red 

line indicates we recorded that solution as inducing (or 

exacerbating) the barrier. We used some of the capabilities of 

JPL-developed risk management software, DDP
14

 to record 

the V&V information. This software offers several ways to 

view and utilize such relationships – e.g., for a specific 

 
Figure 5. A view of a portion of the 

connections between barriers and solutions. 



 

 

American Institute of Aeronautics and Astronautics 
 

 

5

barrier, list the solution(s) available to help overcome it, keep track of the selected solutions and the additional 

barriers they induce, etc. This is a fragment of a screenshot taken of the software we used to record and help utilize 

the accumulation of V&V information. 

When very similar information (Barriers and/or Solutions in our terms) was found to be repeated in multiple 

sources, no duplicates were created (Barrier or Solution). Instead, if the second source provided a helpful alternate 

phrasing of the same topic, it was recorded as additional descriptive information associated with the original 

instance (Barrier or Solution) and added a reference to that second source. In retrospect our feeling is it would have 

been useful to always have taken the time to add the second reference, even in those cases where we chose not to 

add anything to the original descriptive information – doing so would have given us at the end of this process a more 

thorough index into all the papers we processed. 

In the course of this process, we observed that of all the papers we examined, we found only one discussion of 

verification, in Ref. 8, which stated: 

The process of determining that a PHM technology accurately represents the developer’s conceptual description as a 

function of the design specifications. … Verification deals with the relationship between the conceptual system and the 

realized system and that Validation deals with the relationship between the experimental measurements and 

reality…Verification, while not simple, is much less involved than the more complex statistical nature of validation. 

Generally software quality assurance tools can be used to address programming errors and verify the correctness of the 

software. 

Our impression is that verification challenges in prognosis are not very different from those in diagnosis, and 

verification challenges in general. 

IV. Examples of Barriers, Solutions and Links between them 

This section shows an illustrative example of identifying barriers and solutions, and the links between them to 

illustrate how the information was compiled.  

The introduction of Ref. 8. begins by stating:  

In recent years, many Prognostics and Health Management (PHM) products have been released to market incorporating 

near real-time, automated monitoring, fault detection and isolation capabilities and advanced prognostic prediction 

capabilities. There is a growing need to develop standard methods for quantifying the performance and effectiveness of 

these tools. 

This inspired the generation of a Barrier, given the pithy title of “Lack of standard methods for quantifying 

performance and effectiveness of PHM tools”. The longer quotation was recorded to serve as its explanation; the 

reference to its source was also recorded. 

The paper referenced above goes on to state: 

In order to assess the accuracy of the PHM technologies, Impact Technologies is developing a PHM Verification and 

Validation (V&V) Test Bench. The Test Bench is software application that contains fault pattern operational data and 

ground truth health information for a library of components to be provided to PHM technologies from the sensors 

through the reasoners. 

This inspired the generation of a Solution, given the pithy title “V&V Test Bench”. Again, the longer quotation 

and its reference were recorded. This Solution was linked to the aforementioned Barrier. 

Another paper, Ref. 12, makes the following closely related statement about standard metrics: 

A key step in successful deployment of a PHM system is prognosis certification. Since prognostics is still considered 

relatively immature (as compared to diagnostics), more focus so far has been on developing prognostic methods rather 

than evaluating and comparing their performances. Tests are conducted based on specific requirements to declare the 

goodness of the algorithms but little or no effort is made to generalize the performance over a variety of other situations. 

Hence, there is no direct way of comparing different efforts if one needs to identify the most suitable algorithm among 

several. This calls for a set of general metrics that can be used in a standardized manner. 

This inspired the generation of Barrier “Lack of a standard set of general metrics that can be used in a 

standardized manner (independent of application domain)”. Interestingly, a Solution to this was found in the first 

paper Ref. 8, which in describing more about their Test Bench goes on to say: 

...The PHM V&V Test Bench utilizes a standardized set of mathematical and business case metrics for evaluating the 

performance and effectiveness of PHM systems. The evaluation process is capable of assessing PHM technologies in 

terms of their ability to detect, diagnose and predict fault to failure progression of specific failure modes. Specific metrics 

for these capabilities include accuracy, reliability, sensitivity, stability, risk, economic cost/benefit, and robustness.... 

This inspired the addition of a Solution (“Standardized set of mathematical and business metrics”), linked to the 

metrics Barrier. 
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Shown above are examples where new entries to Barriers and Solutions were generated. The process of judging 

if another Barrier is part of an already existing one is subjective and is not shown here. 

V. Applying the Gathered and Organized Information 

The intent of gathering and organizing information from the literature in this Barriers-Solutions structure was to 

make it amenable to use when considering the V&V of a specific prognostics application. The approach we 

envisaged to using it was the following: 

• Determine which of the listed Barriers are relevant to the prognostics application in question. The listed 

Barriers provide an organized and relatively well-populated structure to doing this. The pithy titles give a 

quick view into the information, the descriptive paragraphs (the key quotations extracted from the original 

papers) provide clarification, and finally the reference back to the sources allow quick access to those 

sources when there is the desire to read more of the context in the original. 

• Consider the solutions listed as related to the relevant Barriers. Awareness of these Solutions may be 

helpful in suggesting approaches to overcoming the Barriers for the specific prognostics application. 

We began an attempt to follow this approach by applying it to the prognostics application described in Section II. 

This was done by having the author (who had gathered and organized the V&V information into the Barriers-

Solutions structure and who acted as the facilitator) step through the Barriers information and ask questions of the 

other two authors (who acted as the domain experts), taking notes on the discussions that ensued. The results of 

these discussions were then recorded as additional notes associated with the Barrier or Solution. 

Overall, only some of the Barriers were relevant to the prognostics application in question, as might be expected 

given the information was gathered from multiple papers that as a whole spanned a wide range of prognostics 

applications. Making the determination of which were relevant to our applications was usually easy fairly straight 

forward.  

VI. Examples of Specific Results 

Some examples of following our approach are summarized in Table 1, which lists in each row: 

• Barrier: the instance of a generic Barrier relevant to our prognostics application, taken from our 

previously assembled list of such (the number that precedes the name of the Barrier is its number in our 

list of all Barriers – see the Appendix). 

• Barrier Manifestation: the specific manifestation of that Barrier in our application, 

• Solution: the specific solution approach we are following in our application, 

• Solution Drawbacks: the drawbacks, if any, of that solution approach. 

For example, a common Barrier is managing different users’ objectives, goals, and requirements. For our 

specific application, our specific use of PHM (by tracking the health of components and predicting how long they 

will last) aims to address the topmost metrics that motivate use of such predictions. In our case, that is indicating the 

need for proactive action to avoid an interrupted launch countdown due to failure of ground equipment, or, before 

the start of ground operations, recognizing which components will reliably last the duration of their corresponding 

ground operations, and initiating component replacements if warranted by confident prognostic predictions. 

A number of the relevant Barriers were assessed to be ‘solved problems’ as far as this particular prognostics 

application was concerned. For example, for the Barrier (2) of “Different users of prognosis have different 

requirements; hence metrics should be tailored for each end user” we are able to take advantage of access to subject 

matter experts to help us understand what the user requirements are, so we can match offerings to those 

requirements. We have established that metrics that were previously developed
12,16

 are sufficient to meet the user 

needs. For the valve, we have decided on using practical metrics, such as prognostic horizon (the time when the first 

confident prediction can be made), relative accuracy (a measure of prediction accuracy relative to true RUL), and 

the α-λ metric (a true or false indication of whether a fraction of β of the probability mass of the prediction within a 

bound of α from the true RUL, for a given time point λ). Figures 6 and 7 show two such α-λ plots for prediction of 

spring damage of the valve. The two plots illustrate the improvement in performance that can be achieved with the 

addition of particular sensors. Note that the percentages denote how much of the probability mass is contained 

within the α bounds.  

In response to Barrier (4.1.1) we have developed a physics-based simulation of nominal and faulty valve 

behavior, including wear and aging processes
4
. Using this simulation, we may develop our prognostic algorithms 

and evaluate them under many different scenarios including different amounts of noise, different fault magnitudes, 

and different sensor suites
4,15

.  
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Developing a simulation of the much larger cryogenic loading system that includes these component models is 

much more difficult, but the value of such a large-scale simulation would be to provide a more realistic idea of the 

conditions under which the component is being used, and to reveal unexpected side effects that might have been 

overlooked (e.g., a pressure shock wave, which may manifest only when the whole system is simulated). A system-

level simulation is under development for the cryogenic loading scenario (Barrier 4.3). 

Table 1. Summary of some specific examples of following our process. 
 

Barrier  Barrier Manifestation Solution Solution Drawbacks 

1. Confusion about 

terms and definitions 

Require clear terms and definitions 

for communication of technical 

approach and results. 

Adopt terms and definitions 

used in aerospace industry. 

None identified. 

2. Lack of standard 

methods and metrics 

for evaluation 

Require evaluation of algorithm 

performance and comparison to 

other algorithms. 

(Solutions 2.5, 3.2) Adopt 

prognostics performance 

metrics described in
12,16

. 

None identified. 

4.1.1 Lack of ground 

truth information 

Proper evaluation of prognostic 

results requires knowledge of actual 

ground truth information (true EOL 

and RUL values). This data is not 

present in actual launch operations 

due to regular maintenance and 

safety constraints that prevent 

running a component to actual 

failure. 

(Solution 2.9.1) Develop 

simulation models based on 

detailed physics knowledge 

of component operation, 

fault modes, and damage 

progression processes. 

Evaluate algorithms using 

large sets of simulation data 

under various conditions. 

Also utilize inspection 

results of partly damaged 

components. 

(Barriers 4.3.2, 4.3.3) 

Simulation models may be 

expensive to develop, 

require domain expertise, 

and they in turn require 

validation to be used 

reliably, which may be 

difficult due to the initial 

lack of ground truth 

information. 

4.3 Incomplete 

mission data 

Mission data covers nominal 

operation, but very few instances of 

fault conditions or failures occur 

during actual missions, with which 

prognosis algorithms may be 

validated. 

(Solution 2.9.1) Develop 

system-level simulations 

that cover conditions of 

interest. Validate simulation 

against whatever data is 

available. 

(Barriers 4.3.2, 4.3.3) 

System-level simulations 

are difficult and expensive 

to develop, require a great 

deal of domain expertise, 

and are themselves difficult 

to validate. 

4.3.14 Design 

changes render 

existing databases 

unusable 

Historical data may contain 

instances of failures, however since 

those times components have been 

modified or operating conditions 

changed to prevent reoccurrence of 

observed faults. 

Determine extent to which 

design changes affect fault 

modes of interest, as some 

of these are still possible, 

but more unlikely. 

New fault modes are not 

captured. 

4.4.2 Difficulty to 

identify anomalous 

operation associated 

with incipient faults 

Incipient faults are slowly 

developing and may be hidden 

within sensor noise before their 

effects are observable. 

Utilize statistical methods to 

separate sensor noise from 

abnormal behavior using 

model-based algorithms. 

An accurate model of the 

process is needed in order to 

reliably distinguish incipient 

faults from sensor noise. 

4.4.5 Robustness to 

noisy data 

Indications of faults can be hidden 

within noisy measurements, e.g., in 

the discharge flow sensor of a 

pump, where small changes in flow 

indicate onset of failure. 

Utilize particle filter 

algorithm to handle sensor 

and process noise, and 

provide uncertainty 

estimates. Evaluate and tune 

algorithms under different 

noise conditions using 

simulation models or actual 

data with more noise 

superimposed. 

Assumptions about 

mathematical form of noise 

sources may not be realistic. 

4.4.9.3 

Computational 

resources 

Computational resources may be 

limited for certain equipment, or 

quality of prognostic results may 

not be reliable enough to justify the 

need for high computational 

resources.  

Utilize particle filter 

algorithm, where the 

computational complexity 

may be tuned by limiting the 

number of particles used in 

the probability distribution 

approximation. 

Reducing the number of 

particles used trades off 

estimation and prediction 

accuracy and precision. 
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This solution itself presents additional barriers, 

since simulations may require a lot of resources to 

build, and the simulator must be validated as well so 

that predicted fault and failure simulations are 

trustworthy. In our case, individual models of the 

valves are relatively inexpensive to design, but the 

development of the system-level simulation is much 

more demanding. To cope with the model complexity 

we leverage component-based modeling strategies.  

Assessing the valve model’s fidelity is another 

key issue. We have specific information about the 

valve such as its dimensions, operating pressures, and 

properties of the pneumatic gas. This information 

allows particular parameters of the model to be preset, 

but the remaining parameters need to be determined 

from actual data. For the case under consideration, the 

only sensors available provide discrete valve-opened 

and valve-closed signals. One can derive only open 

and close times from this information and we have 

tuned the model parameters to match the real open 

and close times. However, in the absence of richer 

data, it is difficult to resolve whether the simulation 

model accurately captures all failure mechanisms.  It 

is envisioned for this application to pursue a 

validation through time, i.e., field data (both sensor 

measurements and maintenance feedback) will be 

used to fine-tune the model parameters, if needed. 

To manage model complexity, simplifying 

assumptions must also be made. Models of noise, 

which are often Gaussian, may be simplifications of 

the real world (Barrier 4.4.5). But, we can inspect the 

available data to see if such assumptions are valid. 

Fault and damage models are also typically 

mathematical simplifications of the true process. For 

example, a model of faults in pump bearings may 

model damage as a continuous exponential growth; in 

reality, damage is not completely continuous. 

Individual flakes (debris) are liberated at distinct 

points in time, and the sizes of those flakes vary. Thus 

damage actually progresses in a series of steps, to 

which we fit a line of continuous exponential growth. In this case, damage is a stochastic process, so prediction 

cannot be exact. Instead, we employ legitimate approximations, for which the inaccuracy is within the required 

bounds. 

The use of the particle filter as the basis for our technical approach helps to manage some of the barriers. Particle 

filters are state observers, which automatically help to reduce the effects of sensor noise, process noise, and model 

uncertainty in determining a robust estimate of the state of the system. They deal directly with probability 

distributions (approximated discretely), so can readily incorporate various sources of uncertainty, including 

uncertainty in future system inputs, which may greatly affect the prognostics task. In our case, much of this 

uncertainty is naturally removed, as the propellant loading process is well-defined a priori. Because particle filters 

approximate probability distributions in a discrete, sample-based fashion, they may consume a lot of computational 

resources depending on the number of particles selected, which corresponds directly to accuracy and precision of 

estimation (Barrier 4.4.9.3). This number can be tuned depending on the available resources. In our application, this 

is not as much of an issue because the algorithms are operating in a ground-based scenario, where computational 

resources are not very limited, unlike for in-space scenarios. 

 
Figure 6. α-λ metric for spring damage prediction, 

where α=0.1, β=0.4, and continuous valve position 

and gas pressures are measured. 

 
Figure 7. α-λ metric for spring damage prediction, 

where α=0.1, β=0.4, and only discrete valve position 

sensors are used. 
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VII. Conclusion 

We believe our approach to gathering and organizing prognostics V&V information from relevant literature, and 

then applying it to our specific prognostics application, provides a novel methodological way to approach V&V. 

Conventional literature surveys have a different purpose – they attempt to distill general themes, offer comparisons 

and contrasts, etc. Our intention was to provide an aid that allows the application of knowledge gleaned from the 

literature. It also allows the user to break down the V&V process into smaller segments and to identify potential 

bottlenecks which then allow focusing the attention. The specific approach we took to organizing the information – 

into categories of “Barriers” and “Solutions”, where each is accompanied by explanatory text from the original 

sources, coupled with references to the sources themselves – seems to have worked reasonably well overall. There 

are aspects that could be improved; the descriptive text recorded proved on occasion to be insufficient to serve as a 

standalone explanation of the item in question – fairly often we found the need to trace back to the original source 

and read more of the explanatory context; the reference to the source helped, but still meant a somewhat 

cumbersome process; we also feel it would have been better to have taken the time to record a reference back from 

an item (Barrier or Solution) to all the sources where that item, or its equivalent, were discussed; the overall 

hierarchical organization of these items (see Appendix for the listing of their titles) could probably be improved 

upon. What we found to be most useful was to use the Barriers as a series of talking points, taking notes as we went 

along as to our prognostics experts’ understanding of whether, and if so how, that Barrier applied to our application. 

This process both serves as a means to capture the rationale that justifies faith in the prognostics application’s 

approach, and to stimulate (and again capture) thoughts on areas of concern and possible approaches to addressing 

them.   

Appendix 

 

Tables 2 and 3 list the pithy titles we formed for the Barriers and Solutions identified from the literature. As 

explained in the body of the paper, we recorded additional information with each of these – more extensive 

quotations from source document to serve as explanatory text, and references to the source documents themselves. 

Such additional information is omitted from the list below. The hierarchical numbering of these items stems from 

our organization of these items into simple groupings. It should also be noted that the number of quotations for 

particular papers does not necessarily reflect the importance of such paper to the work in general but the order in 

which the papers were reviewed. 
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Table 2. Barriers (titles of). 

 
4.4.3: Stability of output fault confidence level8 

4.4.4: Range of operating (duty) conditions over which 

PHM system will detect anomalies8 

4.4.5: Robustness to noisy data8 

4.4.6: Accuracy of prediction8 

4.4.7: Precision of prediction8 

4.4.8: Confidence of prediction8 

4.4.9: Cost Assessment 

4.4.9.1: Acquisition and implementation costs8 

4.4.9.2: Operation and maintenance costs8 

4.4.9.3: Computational resources8 

4.4.9.4: Susceptibility to unexpected behavior due 

to unforeseen events8 

4.4.9.5: Net value of a PHM technology8 

4.4.10: Different users' objectives/goals/requirements 

4.4.10.1: Program Manager's goals - assess 

economic viability12 

4.4.10.2: Field commander's / Plant Manager's 

goals - resource allocation and mission 

planning11,12 

4.4.10.3: Operator's goals - action and re-planning 

during mission12 

4.4.10.4: Maintainer's goals - know when to 

perform maintenance11,12 

4.4.10.5: Designer's goals - implement/improve the 

prognostic system12 

4.5: Lack of benchmark datasets or models to evaluate 

prognostics systems12 

4.6: Lack of standardized methodology for performance 

evaluation12 

5: Other V&V challenges 

5.1: Difficulty of developing information analysis tools8 

5.2: Need to protect proprietary algorithms and software 

design approaches8 

6: PHM design & maintenance challenges 

6.1: Cannot identify the most suitable prognostic algorithm 

among alternatives 

6.1.1: Lack of generalized results for performance of 

prognostic algorithms12 

6.1.2: Confusion between need for general metrics and 

need for tailored metrics12 

6.2: Difficult to specify crisp and unambiguous 

requirements12 

6.3: Some applications lack an explicit declaration of fault 

detection12 

6.4: Some algorithms cannot start predicting as soon as a 

fault is detected12 

6.5: Overall PHM system performance depends on 

detection and diagnosis7 

6.6: High cost of correcting an erroneous PHM system 

once fielded8 

6.7: Limitations of the overall PHM approach 

6.7.1: Physics-of-failure (POF) models computationally 

prohibitive to apply at the system level13 

6.7.2: Reliability methods do not handle idiosyncrasies 

of specific systems13 

 

1: Confusion about terms and definitions 

1.1: Terms lack standard, uniform definitions9 

1.2: Different users of prognosis have different 

requirements; hence metrics should be tailored for 

each end user12 

1.3: V&V definitions and approaches differ by 

industry, application objective and scope8 

2: Lack of standard methods and metrics for evaluation 

2.1: Lack of standard methods for quantifying 

performance and effectiveness of PHM tools8 

2.2: Lack of a standard set of general metrics that can 

be used in a standardized manner (independent of 

application domain)12 

3: Verification challenges 

3.1: Programming errors and software correctness8 

4: Validation challenges 

4.1: Validation relies on ground truth information 

4.1.1: Lack of ground truth information sources8 

4.1.2: Inappropriate selection of ground truth8 

4.1.3: System overtraining7 

4.2: Evaluation appropriate to level: component or 

system 

4.2.1: Evaluation of technical performance and 

PHM algorithms at component/ subsystem level8 

4.2.2: Evaluation of system level capabilities - 

operational goals, economic cost/benefit8 

4.3: Incomplete mission data  

4.3.1: Need for signals, noise and fault signatures8 

4.3.2: Simulation models expensive to develop8 

4.3.3: Simulated data may not always be realistic8 

4.3.4: Need inexpensive way of producing fault 

and fault progression data8,10 

4.3.5: Data collected on component or subscale 

test rigs may have limited applicability for actual 

system fault observability8 

4.3.6: Need subsystem/system fault 

characterization data8 

4.3.7: Seeded faults may not be entirely realistic 

of natural fault8 

4.3.8: Need vehicle/mission data8 

4.3.9: Data from dedicated missions does not 

cover full range of potential conditions8 

4.3.10: Data from dedicated missions has no 

critical faults or progression8 

4.3.11: Need data from full range of mission, 

operational, and environmental conditions8 

4.3.12: Data from a technology maturation field 

program limited to opportunistic fault occurrence8 

4.3.13: A technology maturation field program 

delays use and implementation in field [actual 

mission] 8 

4.3.14: Design changes render existing database of 

faults unsuitable for V&V purposes10 

4.4: Assessment needs 

4.4.1: Detection confidence level8 

4.4.2: Ability to identify anomalous operation 

associated with incipient faults8 
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Table 3. Solutions (titles of). 

 
1: Definitions 

1.1: Verification8 

1.2: Validation8 

1.3: Conceptual System8 

1.4: Realized System8 

1.5: Prognostics12 

1.6: Confidence vs. performance12 

2: Methods/approaches 

2.1: V&V prognostics system prior to deployment8 

2.2: Software quality assurance tools address programming 

errors and verify correctness8 

2.3: Standardized set of mathematical and business metrics8 

2.4: Database of testing, simulation or in-service fault data8 

2.5: Use performance metrics to evaluate technical performance 

and accuracy of the PHM algorithms at component or 

subsystem level8 

2.6: Use effectiveness measures to evaluate system level 

capabilities in terms of achieving overall operational goals and 

economic cost/benefit8 

2.7: Open systems architecture (OSA) standards8 

2.8: Open systems architecture (OSA) architecture8 

2.9: Obtaining data for use in PHM validation 

2.9.1: Simulation Models and Fault Generation8 

2.9.2: Component and LRU Fault and Failure Tests8 

2.9.3: Subsystem/System Fault Characterization Tests8 

2.9.4: Dedicated mission for normal and off-normal test and 

evaluation8 

2.9.5: Technology Maturation Field Program8 

2.9.6: Adaptive Learning7 

2.9.7: Highly Accelerated Stress Simulation7 

2.9.8: Seeded Fault Testing11 

2.9.9: Accelerated Mission Testing11 

2.9.10: Run components/systems until failure10 

2.10: Ground Truth Sources8 

2.11: Historical data akin to current process12 

2.12: Data sets with associated ground truth information8 

2.13: Benchmark datasets or models12 

2.14: Advance planning to avoid system overtraining 

2.14.1: Robust system testing7 

2.14.2: Use of multiple classifiers through knowledge 

fusion7 

2.14.3: Data reserve/hold-out techniques7 

2.15: V&V Test Bench8 

3. Metrics 

3.1: Metrics for detecting and classifying 

system faults8 

3.1.1: Accuracy metric8 

3.1.2: Detection Threshold Metric 

3.2: Prognostics metrics 

3.2.1: Performance metrics 

3.2.1.1: Stability Metric8 

3.2.1.2: Detection Duty Sensitivity 

Metric8 

3.2.1.3: Noise Sensitivity Metric8 

3.2.1.4: Accuracy of Prediction8 

3.2.1.5: Precision of prediction8 

3.2.1.6: Confidence8 

3.2.2: Effectiveness metrics 

3.2.2.1: Implementation Cost Metric8 

3.2.2.2: Operation & Maintenance Cost 

Metric8 

3.2.2.3: Computational performance 

metrics 

3.2.2.3.1: Computer Resource 

Metric12 

3.2.2.3.2: Comp. Sci. Big O 

notation for describing 

computational complexity of 

algorithms12 

3.2.2.3.3: CPU time / elapsed time12 

3.2.2.3.4: Samples per unit time 

capacity12 

3.2.2.3.5: Memory space 

utilization12 

3.2.2.4: System Complexity Metric8 

3.2.2.5: Technical Value8 

3.2.2.6: Total Value / Life cycle cost8,12 

3.2.2.7: Return on investment (ROI)12 

4: Design 

4.1: Good PHM system design techniques7 

4.2: Prognosis carried out on a decay process12 

4.3: Continuous data collection12 
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