
Qualitative Event-based Diagnosis Applied to a
Spacecraft Electrical Power Distribution System

Matthew J. Daiglea,1, Indranil Roychoudhuryb,1, Anibal Bregonc,2,∗

aNASA Ames Research Center, Moffett Field, CA, 94035, USA
bSGT Inc., NASA Ames Research Center, Moffett Field, CA, 94035, USA

cDepartment of Computer Science, University of Valladolid, Valladolid, 47011, Spain

Abstract

Quick, robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. We develop a fault
detection, isolation, and identification framework for three separate diagnosis algorithms: the first using global model;
the second using minimal submodels, which allows the approach to scale easily; and the third using both the global
model and minimal submodels, combining the strengths of the first two. The diagnosis framework is applied to the
Advanced Diagnostics and Prognostics Testbed, that functionally represents spacecraft electrical power distribution
systems. The practical implementation of these algorithms is described, and their diagnosis performance using real
data is compared.

Keywords: Fault diagnosis, model-based diagnosis, structural model decomposition, electrical power systems, ADAPT

1. Introduction

Fault diagnosis plays an essential role in ensuring system safety in many application domains, from industrial
power plants to aerospace vehicles. When a fault occurs in a system, diagnosis software must be able to quickly detect
the presence of the fault, isolate the true fault among many potential fault candidates, and identify the fault magnitude
[1–4]. With this information, automated mitigation and recovery actions can be taken. Proper recovery actions enable
successful continued operation and prevention of catastrophic consequences, both of which lead to cost savings [5, 6].

In this paper, a model-based diagnosis approach for the Advanced Diagnostics and Prognostics Testbed (ADAPT),
an electrical power distribution system that is representative of those on spacecrafts, is developed. ADAPT serves
as a testbed through which faults can be injected to evaluate diagnostic and prognostic algorithms [7]. Located at
NASA Ames Research Center, ADAPT has been established as a diagnostic benchmark system through the industrial
track of the International Diagnostic Competition (DXC) [8, 9]. Within the DXC, specific diagnostic problems are
defined for ADAPT, and competing algorithms are evaluated using real experimental data obtained from the ADAPT
hardware. Diagnostic algorithms must deal with a variety of real-world issues in order to be successful. In particular,
this paper is focused on diagnosing faults on a subset of ADAPT, called ADAPT-Lite. The application context is that of
an unmanned aircraft system, and the diagnosis must be used to provide mission abort/continue commands [8]. In order
to do this, faults must be correctly detected (i.e., determine if a fault is present in the system), isolated (i.e., determine
which fault has occurred), and identified (i.e., estimate the parameters that define the fault behavior), under the single
fault assumption. Although solutions in this work are specifically developed for ADAPT, the approach is model-based
and therefore can be applied to different systems given suitable models.

∗Corresponding author
Email addresses: matthew.j.daigle@nasa.gov (Matthew J. Daigle), indranil.roychoudhury@nasa.gov (Indranil

Roychoudhury), anibal@infor.uva.es (Anibal Bregon)
1M. Daigle and I. Roychoudhury’s work has been partially supported by the NASA System-wide Safety and Assurance Technologies (SSAT)

project.
2A. Bregon’s funding for this work has been provided by the Spanish MICINN DPI2013-45414-R grant.

Preprint submitted to Control Engineering Practice December 16, 2014

The model-based diagnosis approach developed in this work is rooted in a qualitative fault isolation framework
that is based on the analysis of residual signals, where residuals are computed as the difference between observed and
predicted system variables [10]. Faults in the system are modeled as changes in the value of the system parameters [10]
and as changes in component modes [11]. Faults cause discrepancies in observed behavior and model-predicted
behavior, and thus manifest as deviations in the residual signals. Fault detection involves statistical testing of the
residuals. The transients of residual deviations are abstracted qualitatively and compared to predicted fault transients to
enable quick fault isolation. Both the qualitative change in the residual signal, expressed as + and - values in magnitude
and slope, as well as the temporal ordering of these transients as they manifest in the residuals, are used as diagnostic
information, establishing an event-based qualitative fault isolation framework [11].

Predicted values of system outputs are computed by using models of the system, which can be either a global model
of the system or local submodels. Structural model decomposition methods can be used to systematically compute
the submodels. The use of local submodels leads to increased scalability of the diagnosis algorithm [12, 13] and
increased diagnosability. They been successfully used for fault diagnosis in industrial [14] and aerospace applications
[15]. The main idea is to take advantage of the analytical redundancy provided by the sensors and the model to derive
minimal submodels that provide additional information useful for diagnosis. In particular, this paper uses a structural
model decomposition approach based upon Possible Conflicts (PCs) [16], which is a structural model decomposition
technique equivalent to Analytical Redundancy Relations (ARRs) [14, 17]. PCs are computed off-line as the minimal
subsets of the global model constraints that produce inconsistencies when faults occur. Residuals may be computed
using PCs, and residual deviations analyzed following the qualitative fault isolation framework [10, 11, 18]. Then,
quantitative fault identification can be carried out by using minimal local submodels for parameter estimation [18].

The contributions of this work are as follows. First, a novel model-based diagnosis framework is developed that
addresses fault detection, isolation, and identification. It combines techniques from qualitative fault isolation and
structural model decomposition. Specifically, structural model decomposition is used as an underlying technique to
automatically determine the sets of submodels for each diagnosis task. From this framework, several diagnoser designs
can be derived using different sets of models and submodels. We show that two previous algorithms, QED (Qualitative
Event-based Diagnosis) and QED-PC (QED with Possible Conflicts) [19] can be formulated as specific instantiations of
this framework, where QED uses a global system model, and QED-PC uses minimal local submodels. A new algorithm,
QED-PC++, that uses both the global model and the minimal local submodels, is formulated, and it is shown how it
combines the strengths of QED and QED-PC. The three algorithms are implemented as diagnostic solutions for the
ADAPT case study, which includes the development of models of ADAPT suitable for diagnosis, the integration of
heuristic fault isolation rules to improve fault isolation performance, and novel fault identification techniques. Using a
large, comprehensive set of experimental data from the ADAPT hardware, the three algorithms are applied and their
performance is compared. By analyzing the set of experimental results, we discover their limitations, and suggest
possible future improvements and extensions.

The paper is organized as follows. Section 2 describes the ADAPT case study. Section 3 overviews the diagnosis
approach. Section 4 provides the system model and describes the structural model decomposition approach. Section 5
describes fault detection and Section 6 describes symbol generation. Section 7 discusses fault isolation, and Section 8
describes fault identification. Section 9 covers decision-making. Section 10 presents the experimental results and
discusses lessons learned. Section 11 describes related work, and Section 12 concludes the paper.

2. The Advanced Diagnostics and Prognostics Testbed

The Advanced Diagnostics and Prognostics Testbed is an electrical power distribution system that is representative
of those on spacecraft, and has been established as a diagnostic benchmark system through the International Diagnostic
competition [20]. As mentioned in the previous section, in this work, we focus on a subset of ADAPT, called ADAPT-
Lite, which has been used to define Diagnostic Problem I of the industrial track of the DXC [8, 9], in which the
ADAPT-Lite hardware is used to emulate the operation of an electrical power system aboard an Unmanned Aircraft
System (UAS).

A system schematic for ADAPT-Lite is given in Fig. 1. A battery (BAT2) supplies electrical power to several loads,
transmitted through several circuit breakers (CB236, CB262, CB266, and CB280), relays (EY244, EY260, EY281,
EY272, and EY275), and an inverter (INV2) that converts dc to ac power. ADAPT-Lite has one dc load (DC485)
and two ac loads (AC483 and FAN416). There are sensors throughout the system to report electrical voltage (names

2

Cs

C0

Rs

Rdc

INV2

Rac

BAT2

AC483DC485

FAN416

ST516

ω

TE228

TB

ISH236 ESH244A
IT240

iB

E240

v1

E242

v2

CB236 EY244 EY260 C
B

2
8

0
E

Y
2

8
1

IT281

idc

E281

vdc

CB262

E265

vrms

CB266

IT267

irms

E
Y

2
7

2

E
Y

2
7

5

RinvvB

ifaniac

vinvv3 v4

Figure 1: ADAPT-Lite schematic.

Table 1: Components of ADAPT-Lite, their failure modes, and abort recommendations by failure mode.

Components Failure Mode Recommendation
AC483, DC485 Failed Off Abort

Resistance Offset Conditional
Resistance Drift Conditional
Intermittent Resistance Offset Conditional

CB236 CB262, CB266, CB280 Failed Open Abort
E240, E242, E265, E281, TE228 Offset None

Stuck None
Drift None
Intermittent Offset None

IT240, IT267, IT281, ST516 Offset Conditional
Stuck Abort
Drift Conditional
Intermittent Offset Conditional

ESH244A, ISH236 Stuck None
EY244, EY260, EY272, EY275, EY284 Stuck Open Abort
FAN416 Underspeed None

Overspeed Abort
Failed Off Abort

INV2 Failed Off Abort

beginning with “E”), electrical current (“IT”), and the positions of relays and circuit breakers (“ESH” and “ISH”,
respectively). There is one sensor to report the operating state of a load (fan speed, ST516) and another to report the
battery temperature (TE228).

A diagnostic algorithm is used to inform the operator if faults have occurred, and if so, whether the fault requires
aborting the mission and landing the UAS. Given the time-stamped vectors of system inputs u(t) and outputs y(t), the
goal of the diagnosis algorithm is to detect the fault, isolate the faulty component and its fault mode, identify the fault
magnitude, and then generate an abort command if necessary by t = 4 minutes into the mission. The necessity of an
abort depends on the fault type, and, in some cases, on the fault magnitude, thus, this diagnostic problem requires the
diagnostic algorithm to perform not only fault detection and isolation, but also fault identification.

Table 1 summarizes the abort recommendation for each fault mode in ADAPT-Lite. A command to abort should be
given for any fault that results in a loss of power to the three loads, i.e., faults in any of the circuit breakers or relays, a
failure in the inverter, and failures in the loads themselves. An overspeed fault of the fan results in an abort, but an
underspeed fault does not. For a resistance change in the dc and ac loads, an offset (i.e., bias) fault triggers an abort if
its magnitude is outside an acceptable range, a drift fault triggers an abort if the fault magnitude will be too large by the
end of the mission, and an intermittent resistance offset fault triggers an abort if the average value of the resistance
(over both nominal and faulty time periods) is outside an acceptable range. For the sensors deemed critical, IT260,
IT267, IT281, and ST516, the mission must be aborted whenever the sensor is stuck, or if the offset, drift, or average
intermittent value is outside an acceptable range by the end of the mission. For the remaining (noncritical) sensors, an
abort is never necessary.

3

Figure 2: Diagnosis and recovery architecture.

3. Diagnosis Approach

The proposed diagnosis architecture is shown in Fig. 2. The system receives inputs u(t) (for ADAPT-Lite, circuit
breaker and relay commands) and produces outputs y(t) (current measurements, voltage measurements, etc.). The set
of system models (Section 4), consisting of a global model and/or a set of submodels, given inputs u(t), computes
predicted values ŷ(t). The fault detection module (Section 5) compares y(t) and ŷ(t) and determines whether the
differences indicate a fault. The symbol generation module (Section 6) transforms deviations from expected behavior
into a symbolic representation, where a symbol is denoted by σ. The fault isolation module (Section 7) uses the
sequence of these symbols to isolate faults F, by comparing to predicted symbol sequences for the faults. Each fault
f ∈ F is associated with a component, a fault mode, and a set of fault parameters. The fault identification module
(Section 8) estimates, for each fault f ∈ F, the values of the fault parameters, which also helps to further isolate faults.
The identified fault set is output as Fid and provided to the decision maker. The decision making module (Section 9)
determines the command c to take (a possible abort command), based on the given diagnosis.

All the algorithms presented in this work (QED, QED-PC, and QED-PC++), which will be described in the
following sections, are captured within this single diagnosis framework and implemented following this same general
architecture. The main difference lies in the underlying models used for the diagnosis tasks: QED is based on a global
system model of the system; QED-PC is based on minimal submodels computed from the global system model; and
QED-PC++ is based on the combination of the global model and the minimal submodels. In the following sections,
each piece of the diagnosis architecture is described in detail.

4. System Modeling

The proposed diagnosis approach is model-based, requiring a model describing both nominal and faulty behavior to
be used for prediction of nominal values, and for fault detection, isolation, and identification. We seek to use the most
parsimonious models to solve the diagnosis task. Because fault identification is required, the models must ultimately be
quantitative.

In this work, the modeling framework described in [21] is used. Its main details are summarized here for
completeness. We first define a model.

Definition 1 (Model). A modelM is a tupleM = (V,C), where V is a set of variables, and C is set of constraints. V
consists of five disjoint sets, namely, the set of state variables, X; the set of parameters, Θ; the set of inputs, U; the set
of outputs, Y; and the set of auxiliary variables, A. Each constraint c = (εc,Vc) ∈ C consists of an equation εc involving
variables Vc ∈ V .

Input variables u ∈ U are known and correspond in ADAPT-Lite to relay and circuit breaker commands (6 in
total); and the output variables y ∈ Y correspond to (measured) sensor signals (ADAPT-Lite has 11). Parameters θ ∈ Θ

include explicit model parameters that are used in the model constraints. Θ does not need to include all parameters in
the equations, only those that must be included explicitly (i.e., fault parameters). The auxiliary variables A are extra
variables that are functions of the states, and are used to simplify the model structure.

A constraint c = (εc,Vc) is a tuple including an equation εc over a set of variables Vc. It does not impose any
computational causality on the variables Vc, i.e., it does not specify which v ∈ Vc is the dependent variable in equation
εc. The notion of a causal assignment to define the dependent variable is required.

4

Definition 2 (Causal Assignment). A causal assignment α to a constraint c = (εc,Vc) is a tuple α = (c, vout
c), where

vout
c ∈ Vc is assigned as the dependent variable in equation εc.

A causal assignment of a constraint is written by using the constraint’s equation in a causal form, using := instead
of = to make the causal direction explicit.

As described in [21], a set of causal assignmentsA, for a modelM is valid if (i) there are no causal constraints
computing variables in U or Θ, (ii) no variable in Y acts as a dependent variable in any causal constraint, and (iii) every
other variable has exactly one causal constraint computing it. A causal model is a model extended with a valid set of
causal assignments.

Definition 3 (Causal Model). Given a modelM∗ = (V,C), a causal model forM∗ is a tupleM = (V,C,A), whereA
is a set of valid causal assignments.

We next describe the global model for ADAPT-Lite, followed by a description of the structural model decomposition
methodology and the submodels derived for ADAPT-Lite from the global model.

4.1. Global Model
A system schematic for ADAPT-Lite is given in Fig. 1. BAT2 consists of two 12 V lead-acid batteries in series,

which are lumped together into a single battery model. Battery models typically must include a set of complex
nonlinear behaviors [22]. However, most of these nonlinear characteristics are not evident within the time frame of
the experimental scenarios. Therefore, a simplified electrical circuit equivalent model, consisting of a single large
capacitance, C0, in series with a capacitor-resistor pair, Cs and Rs, that subtracts from the voltage provided by C0 (see
Fig. 1), is used. The battery may then be described as

v̇0 :=
1

C0
(−iB) , (c1)

v0 :=
∫ t

t0
v̇0dt, (c2)

v̇s :=
1

Cs
(iBRs − vs) , (c3)

vs :=
∫ t

t0
v̇sdt, (c4)

vB := v0 − vs, (c5)

where iB is the battery current, vB is the battery voltage, v0 is the voltage across C0, and vs is the voltage drop across Cs

and Rs. In reality, Rs is a function of state of charge, depth of charge [22], and temperature, but, since it is not observed
to change significantly in the available data, Rs is assumed to be constant. Instead, since the battery voltage decreases
faster at lower voltages, C0 is expressed as a function that decreases with voltage. In the experimental data, battery
temperature, TB, is not observed to change significantly and can be assumed to be constant, i.e.,

ṪB := 0, (c6)

TB :=
∫ t

t0
ṪBdt. (c7)

The battery voltage vB is supplied to the loads through a series of relays and circuit breakers. The intermediate
voltages are described by:

v1 := sCB236 · vB, (c8)
v2 := sEY244 · v1, (c9)
v3 := sEY260 · v2, (c10)

vdc := sCB280 · v3, (c11)
vinv := sCB262 · v3, (c12)

5

where the s variables are the on/off states of the relays and circuit breakers. These states are described by:

sCB236 := uCB236 · fCB236, (c13)
sEY244 := uEY244 · fEY244, (c14)
sEY260 := uEY260 · fEY260, (c15)
sCB262 := fCB262, (c16)
sCB280 := fCB280, (c17)

where the u variables are the input commands for those components, and the f variables are fault parameters used
to capture the failed/stuck open fault modes. Note that CB262 and CB280 cannot be controlled and so have no
corresponding input variables.

The battery current iB is the sum of the dc current, idc, and the input dc current to the inverter, iinv. This is described
by:

iB := idc + iinv, (c18)

idc := sEY281 · fdc ·
vB

Rdc
, (c19)

sEY281 := uEY281 · fEY281, (c20)

where Rdc is the resistance of the dc load, which may change due to a fault, and fdc is a fault parameter used to model
the “failed off” failure mode.

The inverter transforms dc power to ac power. When operating nominally, the rms voltage vrms is controlled very
close to 120 V ac as long as the input voltage is above 18 V:

vrms := 120 · (vinv > 18) · fINV2, (c21)

where fINV2 is a fault parameter used to model the “failed off” failure mode. From a power balance of the ac and dc
sides of the inverter, it results that vinv · iinv = e · vrms · irms, where e is the inverter efficiency, irms is the inverter rms
current, vinv is the inverter voltage on the dc side, and iinv is the input dc current to the inverter. The inverter still draws a
small amount of current even when irms = 0, and this is captured as a dc resistance parallel to the inverter, Rinv. Hence,
the following equation is derived:

iinv :=
vrms · irms

e · vinv
+

vinv

Rinv
. (c22)

The voltage seen by the ac loads is dependent on the state of CB266:

v4 := sCB266 · vrms, (c23)
sCB266 := fCB266. (c24)

The dc and ac resistive loads are modeled as pure resistances, with Rdc and Rac, respectively. The fan has both resistive
and inductive properties, so introduces a phase difference φ in its current from the input voltage. Since only rms values
of the inverter voltage and current are available, only the steady-state ac relations are used. The total rms current drawn
by the ac loads is then

irms :=
1
√

2

∣∣∣∣√2 · i f an · (cos φ + j sin φ) +
√

2 · iac

∣∣∣∣ , (c25)

iac := sEY272 · fac ·
v4

Rac
, (c26)

i f an := sEY275 · f f an ·
v4

R f an
, (c27)

sEY272 := uEY272 · fEY272, (c28)
sEY275 := uEY275 · fEY275, (c29)

6

t

Δθ

 θ(t)

tf

θf(t)

(a) Offset fault profile.

θf(t)

t

tf

θ(t)

m

(b) Drift fault profile.

t

Δθ1

 θ(t)

tf

θf(t)

Δθ2 Δθ3

Δtf1 Δtn1 Δtf2 Δtn2 Δtf3

(c) Intermittent offset fault profile.

Figure 3: Fault profiles.

where R f an is the magnitude of the fan impedance, and fac and f f an are fault parameters used to model the “failed off”
failure modes. The fan speed is expressed as a function of its input voltage

ω̇ :=
1

J f an

(
sEY275 f f an

v4

B f anR f an
− ω

)
, (c30)

ω :=
∫ t

t0
ω̇ dt, (c31)

where J f an is an inertia parameter and B f an is a resistance parameter.
The sensors can be modeled using the following constraints:

yE240 := bE240 + fE240 + v1, (c32)
yE242 := bE242 + fE242 + v2, (c33)
yE265 := bE265 + fE265 + vrms, (c34)
yE281 := bE281 + fE281 + vdc, (c35)

yES H244A := fES H244A + sEY244, (c36)
yIS H236 := fIS H236 + sCB236, (c37)

yIT240 := bIT240 + fIT240 + iB, (c38)
yIT267 := bIT267 + fIT267 + irms, (c39)
yIT281 := bIT281 + fIT281 + idc, (c40)
yS T516 := bS T516 + fS T516 + ω, (c41)
yT E228 := TB + bT E228 + fT E228, (c42)

where, for sensor S , the yS variable is the sensor output, the bS variable is the (nominal) sensor bias, and the fS variable
is the fault parameter.

The fault modes of the different components of ADAPT-Lite are listed in Table 1. As illustrated by the model
constraints, in our modeling framework, faults explicitly correspond to changes in model parameters θ ∈ Θ. Table 2
lists the fault parameters in Θ of the model M that are associated with each component. For the loads, faults are
associated with changes in their resistance parameters or discrete failures (parameter fL for load L). For a sensor S , the
fault parameter fS captures an additive fault. For a relay or circuit breaker C, the fault parameter fC captures a change

7

Table 2: Component Fault Parameters

Component Fault Parameters
AC483 Rac, fac

DC485 Rdc, fdc

CB236 fCB236

CB262 fCB262

CB266 fCB266

CB280 fCB280

E240 fE240

E242 fE242

E265 fE265

E281 fE281

IT240 fIT240

IT267 fIT267

IT281 fIT281

ST516 fS T516

TE228 fT E228

ESH244A fES H244A

ISH236 fIS H236

EY244 fEY244

EY260 fEY260

EY272 fEY272

EY275 fEY275

EY284 fEY284

FAN416 R f an, f f an

INV2 fINV2

in its discrete state; since in the nominal mode, all circuit breakers and relays are connected, these fault parameters
becoming 0 represent the switch going from a connected to a disconnected state. Similarly, inverter failure is captured
with the parameter fINV2.

For the resistive load and sensor faults, the fault parameters can take on one of several profiles, including offset,
drift, and intermittent offset profiles, as shown in Fig. 3 (t f denotes the time of fault occurrence). For an offset, the
faulty value θ f (t) is defined by

θ f (t) = θ(t) + ∆θ,

where θ(t) is the nominal value, and ∆θ is the offset. A drift is defined by its slope m, i.e,

θ f (t) = θ(t) + m(t − t f).

For intermittent offsets, the offset randomly alternates between zero and nonzero values, where the periods of faulty
values (∆t f i), the periods of nominal values (∆tni), and the faulty values during each faulty period (∆θi) are chosen
randomly (see Fig. 3c). The profile is summarized by three parameters, the mean offset µ∆θ, i.e, mean(∆θ1,∆θ2, . . .);
the mean faulty time µt f , i.e, mean(∆t f 1,∆t f 2, . . .); and the mean time it is nominal µtn, i.e, mean(∆tn1,∆tn2, . . .).

For the sensor faults, there is an additional fault profile, stuck, where for sensor S , fS (t) is such that yS (t) = c ,
where the stuck value is c and the sensor noise is absent.

In summary, the global model is defined by constraints c1–c42 and the constituent variable sets. The state, parameter,
input, and output variable sets are defined by:

8

• X = {TB, vo, vs, ω}

• Θ = {Rac, fac, Rdc, fdc, R f an, f f an, fCB236, fCB262, fCB266, fCB280, fE240, fE242, fE265, fE281, fES H244A, fEY244, fEY260,
fEY272, fEY275, fEY281, fINV2, fIS H236, fIT240, fIT267, fIT281, fS T516, fT E228}

• U = {uCB236, uEY244, uEY260, uEY272, uEY275, uEY281}

• Y = {yE240, yE242, yE265, yE281, yES H244A, yIS H236, yIT240, yIT267, yIT281, yS T516, yT E228}

4.2. Structural Model Decomposition

In the context of diagnosis, structural model decomposition offers several advantages. For fault isolation, its
primary advantage is that we can create local submodels whose outputs are a function of only a subset of the faults,
i.e., some faults become decoupled from the residuals computed from the local submodel outputs, which can improve
diagnosability. For fault identification, structural model decomposition enables us to find minimal submodels to
estimate parameters [18]. Further, it allows for a distributed diagnosis implementation [13].

Given a system model, submodels are generated that allow for the computation of a given set of variables using
only local inputs. Given a definition of the local inputs (in general, selected from V) and the set of variables that have
to be computed by the submodel (selected from V − U), a causal submodelMi is created from a causal modelM. A
submodel is obtained in which only a subset of the variables in V are computed using only a subset of the constraints in
C. In this way, each submodel computes its variable values independently from all other submodels. A submodel can
be defined as follows.

Definition 4 (Causal Submodel). A causal submodelMi of a causal modelM = (V,C,A) is a tupleMi = (Vi,Ci,Ai),
where Vi ⊆ V , Ci ⊆ C, andAi is a set of (valid) causal assignments forMi.

A causal submodel is generated from a global (causal) model by defining the set of local outputs the submodel
must compute, and the set of local inputs that are available to it. The algorithm for deriving a causal submodel from a
global model is detailed in [21]. It works by starting at the local outputs, and propagating backwards trying to resolve
variables using constraints involving the local inputs, reassigning causality in the process if needed. The procedure has
the property that the generated submodels are minimal, i.e., they contain only the minimal variables and constriants
needed to compute the local outputs.

The (causal) global model offers one way in which to compute predicted values of system outputs, in which the
inputs used are the global inputs to the system. Instead, we can also use causal submodels, where we define for N
sensors a set of N submodels, one for each sensor, where the available local inputs are the global inputs to the system
and the measured values from sensors. The advantages to this approach are (i) improving diagnosability and (ii)
enabling a distributed implementation. The disadvantage is that noisy sensor signals are being used as inputs to local
submodels to compute predicted values of measurements, typically resulting in a slightly diminished fault detection
performance.

The decomposition approach presented in this paper follows the main idea of Possible Conflicts (PCs) [16], where
minimal redundant submodels as computed for fault diagnosis purposes by considering sensor measurements as
inputs. However, our decomposition approach generalizes that idea and provides a framework where submodels can
be computed for other tasks such as fault identification. Additionally, our algorithms allow for the computation of
submodels that are not minimal, which have been proven to be useful for distributed diagnosis [13].

For ADAPT-Lite, the system has 11 sensors, so we obtain 11 minimal submodels. Table 3 shows the local state,
parameter, input, and output variable sets for each, along with the submodel constraints. Note here that for a sensor S ,
a yS ∈ Ui means that the measured value from the sensor is being used as an input, and a yS ∈ Yi means that a predicted
value of yS is being generated. Note that each submodel computes its values independently of all other submodels, i.e.,
no submodel outputs are fed into any other submodels, as the only inputs are the known inputs U and measured sensor
values. In this way, the submodels can be executed in a parallel, distributed fashion if allowed by the computational
hardware.

Table 3: Submodels for the ADAPT System

States (Xi) Parameters (Θi) Inputs (Ui) Outputs (Yi) Causal Assignments (Ai)

9

v0, vs fCB236, fE240, fIT240 uCB236, yIT240 yE240 yE240:=bE240 + fE240 + v1

v1:=sCB236 · vB

vB:=v0 − vs

sCB236:=uCB236 fCB236

vo:=
∫ t

t0
v̇0 dt

v̇0:=−iB/C0

iB:=yIT240 − bIT240 − fIT240

vs:=
∫ t

t0
v̇s dt

v̇s:=(RsiB − vs)/Cs

∅ fE240, fE242, fEY244 yE240, uEY244 yE242 yE242:=bE242 + fE242 + v2

v2:=sEY244v1

sEY244:=uEY244 fEY244

v1:=yE240 − bE240 − fE240

∅ fCB262, fE242, fE265, yE242, yEY260 yE265 yE265:=bE265 + fE265 + vrms

fEY260, fINV2 vrms:=120 fINV2(vinv > 0)
vinv:=sCB262v3

sCB262:= fCB262

v3:=sEY260v2

sEY260:=uEY260 fEY260

v2:=yE242 − bE242 − fE242

∅ fCB280, fE242, fE281, yE242, uEY260 yE281 yE281:=bE281 + fE281 + vdc

fEY260 vdc:=sCB280v3

v3:=sEY260v2

sCB280:= fCB280

sEY260:=uEY260 fEY260

v2:=yE242 − bE242 − fE242

∅ fES H244A, fEY244 uEY244 yES H244A yES H244A:= fES H244A + sEY244

sEY244:=uEY244 fEY244

∅ fCB236, fIS H236 uCB236 yIS H236 yIS H236:= fIS H236 + sCB236

sCB236:=uCB236 fCB236

∅ fCB262, fE242, fE265, yE242, yE265, uEY260, yIT240 yIT240:=bIT240 + fIT240 + iB

fEY260, fIT240, fIT267, yIT267, yIT281 iB:=iinv + idc

fIT281 idc:=yIT281 − bIT281 − fIT281

iinv:=irmsvrms/(evinv) + vinv/Rinv

vrms:=yE265 − bE265 − fE265

vinv:=sCB262v3

sCB262:= fCB262

v3:=sEY260v2

sEY260:=uEY260 fEY260

irms:=yIT267 − bIT267 − fIT267

v2:=yE242 − bE242 − fE242

∅ Rac, fac,R f an, f f an, yE265, uEY272, uEY275 yIT267 yIT267:=bIT267 + fIT267 + irms

fCB266, fE265, fEY272, irms:= 1
√

2

∣∣∣∣√2i f an (cos φ + j sin φ) +
√

2iac

∣∣∣∣
fEY275, fIT267 iac:=sEY272 facv4/Rac

sEY272:=uEY272 · fEY272

i f an:=sEY275 f f anv4/R f an

v4:=sCB266vrms

sEY275:=uEY275 fEY275

sCB266:= fCB266

vrms:=yE265 − bE265 − fE265

∅ Rdc, fdc, fE281, yE281, uEY281 yIT281 yIT281:=bIT281 + fIT281 + idc

fEY281, fIT281 idc:=sEY281 fdcvdc/Rdc

sEY281:=uEY281 fEY281

vdc:=yE281 − bE281 − fE281

10

Figure 4: Sliding windows in the fault detection scheme at time ti.

ω R f an, f f an, fCB266, uE265 yS T516 yS T516:=bS T516 + fS T516 + ω

fE265, fS T516 ω:=
∫ t

t0
ω̇ dt

ω̇:=−ω/J f an + sEY275 f f anv4/(B f an · J f an · R f an)
v4:=sCB266vrms

sCB266:= fCB266

sEY275:=uEY275 fEY275

vrms:=yE265 − bE265 − fE265

TB fT E228 ∅ yT E228 yT E228:=TB + bT E228 + fT E228

ṪB:=0
TB:=

∫ t

t0
ṪB dt

For example, take IT281, where we have U ∪ (Y − {yIT281}) as available local inputs. To compute yIT281, we need to
compute the variables fIT281, which is a fault parameter with a known nominal value (i.e., 0), and idc (constraint c40).
Following the causality backwards, to compute idc, we need to compute sEY281, fdc, vdc, and Rdc (constraint c19).
Both fdc and Rdc are parameters with known nominal values, and sEY281 can be computed with the known input
uEY281 and fEY281, a fault parameter with a known nominal value (constraint c20). To compute vdc, we need sCB262
and v3 (constraint c11), however, we know also that E281 measures this voltage, so we can use the related constraint
(constraint c35) in the causality where yE281 becomes an input, thus completing the submodel.

As we can see from Table 3, each submodel is a function of only a subset of the fault parameters. Therefore, if a
fault occurs, it will cause a discrepancy in only a subset of the local outputs from their observed values. For example, if
R f an changes, we will see a discrepancy only in the predicted values of yIT267 and yS T516. For the remaining submodel
outputs, the submodels will correctly predict the (faulty) sensor values since they are using other sensors as inputs.

The three diagnostic algorithms, QED, QED-PC, and QED-PC++ differ in which set of models/submodels are
used. QED uses only the global system model, and so computes 11 (global) outputs. QED-PC uses the set of minimal
submodels shown in Table 3, and so computes 11 (local) outputs. QED-PC++, on the other hand, uses both the global
model and the minimal submodels, computing a total of 22 outputs.

Recall that we seek to use the most parsimonious models to describe the system behavior. For QED, we actually do
not need to model the complete dynamics, and can simplify the model in some parts because in nominal operation (for
which we need to predict system behavior) the dynamics are limited to certain ranges. For example, the fan speed (ω)
is constant during nominal operation because it is always operated at the same speed, where any deviation from that
speed indicates a fault, and hence does not need to be considered. So, the global model can simply assume ω̇ = 0. The
local submodel computing yS T516, on the other hand, must model the dynamics, because some faults independent of
this submodel, e.g. a fault in the inverter, will cause the fan speed to decrease through a decrease in vrms, for which
yE265 is used as an input to the yS T516 submodel. Consequently, this submodel should correctly predict the gradual
decrease in fan speed. Similarly, the global model may assume vrms = 120 V rms, since any deviation implies a fault. It
can also omit the Cs/Rs pair from the battery model, because it does not need to account for changes in the current
drawn from the battery (any change in current implies a fault).

5. Fault Detection

For every output y, the fault detection module compares the measured signal y(t) with each available prediction of
that signal ŷ(t). The difference of these signals is known as the residual, and our diagnosis approach is fundamentally

11

based on the analysis of residual signals.

Definition 5 (Residual). A residual, ry, is a time-varying signal computed as the difference between a measurement,
y ∈ Y , and a predicted value of the measurement y, denoted as ŷ.

QED computes 11 outputs and, from this, 11 residuals are computed based on the global model. QED-PC also
computes 11 outputs and 11 residuals, but based on the local submodels, and so will have different fault response
characteristics. QED-PC++ computes the combined 22 residuals and so has more analytical redundancy to base its
diagnosis on.

Nominally, residuals are, in a statistical sense, zero, accounting for sensor noise and modeling errors. The explicit
goal of fault detection is to determine statistically significant deviations of the residual values from zero, which indicates
the presence of a fault. In this framework, for robust real-time fault detection, the Z-test with a set of sliding windows
is used (see Fig. 4). This approach is described in detail in [23, 24] and it is summarized here for completeness. First, a
small window, W2, is used to estimate the current mean µr(t) of a residual signal, where t refers to discrete time:

µr(t) =
1

W2

t∑
i=t−W2+1

r(i).

The variance of the nominal residual signal, σ2
r (t), is computed using a large window W1 preceding W2, by a buffer

Wdelay that is meant to ensure that W1 contains no samples after fault occurrence. The variance is computed by

σ2
r (t) =

1
W1

t−W2−Wdelay∑
i=t−W2−Wdelay−W1+1

(r(i) − µ′r(t))
2,

where

µ′r(t) =
1

W1

t−W2−Wdelay∑
i=t−W2−Wdelay−W1+1

r(i).

A user-specified confidence level determines the z− < 0 and z+ > 0 bounds for a two-sided Z-test. The fault
detection thresholds, ε−r (t) and ε+

r (t), are dynamically computed using:

ε−r (t) = z−
σr(t)
√

W2
− E,

ε+
r (t) = z+ σr(t)

√
W2

+ E,

where E is a modeling error term. A fault is detected if µr(t) lies outside of [ε−r (t),ε+
r (t)] at time t.

The parameters W1, W2, Wdelay, the z bounds, and E must be tuned to optimize performance. The W1 window must
be large enough to accurately compute the nominal residual variance, but constrained by memory requirements. The
W2 window must be large enough to accurately compute the mean, but small enough to be respond quickly to faults. In
our implementation, window sizes varied, and 100 ≤ W1 ≤ 200, 10 ≤ W2 ≤ 50, and Wdelay = 10 were sufficient.

For ADAPT-Lite, the selected error terms E for QED and QED-PC are listed in Table 4 (QED-PC++ uses both).
These values were tuned to obtain maximum fault sensitivity without false alarms. Overall, the thresholds are smaller
for QED than for QED-PC. This is expected since the minimal submodels use typically noisy sensor signals as inputs to
compute their outputs. Further, in some cases the minimal submodels must accurately capture more nominal dynamics
with respect to a wider range of inputs as compared to the global model. For example, consider the submodel that takes
in as input uE265, the rms inverter voltage of 120 V rms, and outputs fan speed yS T516. For QED, voltage vrms is always
computed to be 120 V rms, and so the fan speed is always the same. For QED-PC, on the other hand, the fan speed is
modeled using a local submodel. In this case, vrms, which is replaced by yE265 as a local input, can become zero if a
fault such as the inverter failure occurs. Hence, the submodel has to accurately capture the decrease in fan speed when
this happens, and because these dynamics are more difficult to model accurately than a constant value, a larger error
threshold is needed for this residual (i.e., E = 20 rpm for QED and E = 40 rpm for QED-PC).

12

Table 4: E Values for Fault Detection

Residual QED QED-PC
rE240 0.090 0.100

rE242 0.080 0.100

rE265 0.070 0.110

rE281 0.150 0.300

rES H244A 0.000 0.000

rIS H236 0.000 0.000

rIT240 0.110 0.114

rIT267 0.050 0.060

rIT281 0.060 0.090

rS T516 20.000 40.000

rT E228 0.000 0.200

Figure 5: Slope symbol calculation.

Note that for stuck faults in sensors (recall from Section 4 that these faults exhibit no noise in the signal y(t)), a
sensor that is stuck within nominal ranges will not be detected by the above method. Hence, a new detection test for
these faults is required. For sensor y,

stucky(t) =

true,
∑Ns

i=1 |y(t) − y(t − i)| = 0
f alse, otherwise

,

where Ns is a user-defined limit, i.e., if the past Ns samples of y(t) are all the same, then stuck(t) = true. To implement
this, it is sufficient to maintain a counter ks for each sensor that keeps track of how many consecutive values of y(t) up to
the current time point are the same. A sensor is stuck when ks ≥ Ns. The selected value of Ns depends on the particular
sensor. For some sensors in ADAPT-Lite, Ns must be quite large (e.g., Ns = 400), because the sensors normally repeat
the same value for long periods of time. For the discrete sensors ISH236 and ESH244A this test is not applied, because
these sensors are binary-valued and noiseless, so will nominally have long sequences of repeated measured values.

6. Symbol Generation

Robust methods based on the Z-test are also used for symbol generation [24]. Each of the three algorithms use the
same method for each of their computed residual signals. The first symbol is derived from the result of fault detection.
If r(t) is greater than ε+

r (t) (resp. less than ε−r (t)), a + (resp. -) is obtained. The second symbol is calculated for the
direction of the slope of the residual, as explained below.

The approach first starts with an estimate of the initial residual value, µr0 (td), at the time of fault detection, td, over
a small window W3 (see Fig. 5):

µr0 (td) =
1

W3

td+W3−1∑
i=td

r(i).

13

The mean of the residual slope is computed over a window from td to t:

µrd (t) =
1

t − td + 1

 t∑
i=td

r(i) − µr0

 .
Using bounds z− and z+, the thresholds are:

ε−rd
(t) = z−σr

(
1
√

W3
+

1
√

Wn

)
− Es

ε+
rd

(t) = z+σr

(
1
√

W3
+

1
√

Wn

)
+ Es,

where Es is a modeling error term. The + (resp. -) symbol is generated when µrd > ε+
rd

(t) (resp. µrd < ε−rd
(t)). The

window used to calculate the slope, Wn, is increased until the symbol is successfully generated, or t − td becomes
larger than a user-specified limit, at which point the slope is reported as 0, implying that the true slope is either zero or
unknown, but very small. The window sizes for symbol generation are decided upon in the same manner as those for
fault detection. For all residuals we used W3 = 10 and Wn = 100.

A discrete change symbol, representing whether a signal has changed between a nonzero and zero value, which is
used to distinguish between parametric and discrete faults, is also computed. A Z symbol is reported if the estimate is
nonzero and the measurement is zero, N symbol if the estimate is zero and the measurement is nonzero, and X symbol
otherwise. The procedure to compute this value is detailed in [24].

Table 5: Signatures for Selected Faults for QED for ADAPT-Lite

Component Fault Mode rE240 rE242 rE265 rE281 rES H244A rIS H236 rIT240 rIT267 rIT281 rS T516 rT E228

AC483 Offset (∆p > 0) +0X +0X +0X +0X 00X 00X -0X -0X +0X 00X 00X

DC485 Offset (∆p > 0) +0X +0X 00X +0X 00X 00X -0X 00X -0X 00X 00X

DC485 Drift (m < 0) 0-X 0-X 00X 0-X 00X 00X 0+X 00X 0+X 00X 00X

E240 Offset (∆p > 0) +0X 00X 00X 00X 00X 00X 00X 00X 00X 00X 00X

E240 Drift (m > 0) 0+X 00X 00X 00X 00X 00X 00X 00X 00X 00X 00X

E240 Intermittent Offset (µ∆p > 0) +0X 00X 00X 00X 00X 00X 00X 00X 00X 00X 00X

EY244 Stuck Open +0X -0Z -0Z -0Z -0Z 00X -0Z -0Z -0Z 0-X 00X

FAN416 Underspeed +0X +0X +0X 00X 00X 00X -0X -0X 00X -0X 00X

IT267 Offset (∆p < 0) 00X 00X 00X 00X 00X 00X 00X -0X 00X 00X 00X

Table 6: Signatures for Selected Faults for QED-PC for ADAPT-Lite

Component Fault Mode rE240 rE242 rE265 rE281 rES H244A rIS H236 rIT240 rIT267 rIT281 rS T516 rT E228

AC483 Offset (∆p > 0) 00X 00X 00X 00X 00X 00X 00X -0X 00X 00X 00X

DC485 Offset (∆p > 0) 00X 00X 00X 00X 00X 00X 00X 00X -0X 00X 00X

DC485 Drift (m < 0) 00X 00X 00X 00X 00X 00X 00X 00X 0+X 00X 00X

E240 Offset (∆p > 0) +0X -0X 00X 00X 00X 00X 00X 00X 00X 00X 00X

E240 Drift (m >)0 0+X 0-X 00X 00X 00X 00X 00X 00X 00X 00X 00X

E240 Intermittent Offset (µ∆p > 0) +0X -*X 00X 00X 00X 00X 00X 00X 00X 00X 00X

EY244 Stuck Open 00X -0Z -0Z 00X -0Z 00X 00X 00X 00X 00X 00X

FAN416 Underspeed 00X 00X **X 00X 00X 00X 00X -0X 00X -0X 00X

IT267 Offset (∆p < 0) 00X 00X -0X 00X 00X 00X +0X -0X 00X 00X 00X

14

7. Fault Isolation

The goal of the fault isolation module is, based on the output of the symbol generator, to generate the list of
consistent faults F. As new symbols are provided, F shrinks as inconsistent faults are eliminated. We use a qualitative
fault isolation methodology that isolates faults based on the transients they produce in the system behavior, which
manifest as deviations in residual values [10]. The symbolic representation of these deviations, produced by the symbol
generator, which represent the immediate (discontinuous) change in magnitude, the first nonzero derivative change, and
discrete zero/nonzero value changes in the measurement from the estimate, are called fault signatures. Predicted fault
signatures, derived from the system models/submodels are matched to those derived by symbol generation in order to
perform fault isolation. The temporal ordering of observed deviations is also used as additional diagnostic information,
based on the intuition that fault effects will manifest in some parts of the system before others. These temporal orderings
of deviations produced by a fault are termed relative residual orderings [11]. Qualitative fault signatures and residual
orderings can be computed by manual analysis of the system model, by simulation, or automatically from certain types
of models, such as a temporal causal graph as presented in [10, 25].

Fault signatures for a subset of the ADAPT-Lite faults are shown in Table 5 for the QED algorithm and in Table 6
for the QED-PC algorithm. As mentioned, the first symbol represents an immediate change in magnitude, the second
represents changes in the slope, and the third represents discrete changes. As an example, let us consider a positive
offset in E240. This fault will cause an abrupt increase in the E240 residual (+), no change in the slope (0), and no
discrete change behavior (X). As can be seen in Table 5, no other sensor is affected by this fault in the QED approach
(00X). For QED-PC, the positive offset in E240 produces not only the abrupt increase in the E240 residual, but also an
abrupt decrease in the E242 residual with no change in slope, and no discrete change behavior (-0X). Since measured
values from E240 are used as input for the minimal submodel that estimates E242, a fault in E240 causes a deviation in
the residual associated with E242. Resistance offsets in AC483 and DC485 cause multiple deviations for QED but only
one in IT267 and IT281, respectively, for QED-PC. This is caused because the corresponding parameters, Rac and Rdc,
are present only in the minimal submodels for IT267 and IT281, respectively, as shown in Table 3.

Using all the signatures and orderings, it can be determined if the system is fully diagnosable with that information,
i.e., that all faults can be distinguished from each other. It is clear from Tables 5 and 6, that the system is not fully
diagnosable. Specifically, an offset in E240 causes the same (initial) effects in the residuals as an intermittent offset.
This is the case for all other sensors as well along with DC485 and AC483, and consequently, fault identification is
needed here to resolve the ambiguity. Besides these cases, there are four pairs of faults that produce exactly the same
quantitative behavior on the given residuals: failures in CB262 and INV2, failures in EY281 and DC485, failures in
EY272 and AC483, and failures in EY275 and FAN416. Further, for QED, since sensors are only used at the output to
compute residuals, a sensor fault affects only a single residual. Since we are assuming no-exoneration ([26, 27]) in our
work, the absence of residual activations will not be used to exonerate fault candidates. The consequence of this is that,
when a sensor fault occurs, it is necessary to wait to confirm that no other residuals deviate before concluding that
a sensor fault has indeed occurred. For QED-PC, since sensors are used not only as output, but also as input to the
submodels, sensor faults will affect multiple residuals, so this problem is minimized. However, for QED-PC, faults
in DC485 and AC483 affect only a single residual, thus having an analogous situation. Due to these diagnosability
properties, in general, QED will isolate nonsensor faults faster than QED-PC, and QED-PC will isolate sensor faults
faster than QED. By combining these residual sets we improve diagnosability over QED or QED-PC by themselves,
and this is the prime motivation for QED-PC++.

In theory, the absence of a residual deviation cannot be used to exonerate a candidate, because the deviation could
always occur some time in the future. However, in practice, candidates can be exonerated using this information if
a time limit, measured from the detection of a fault, within which a deviation must be observed, can be confidently
introduced. If an expected deviation is not seen within that time limit, this is taken as a direct observation of a 00X
signature and so we eliminate any candidate that predicts otherwise. Such a strategy can be generally applied in any
case where a nonzero signature exists in the fault signature table, but because this depends on the sensitivity of fault
detection, it is possible that some deviations may not be detected, even if anticipated. Therefore, for the ADAPT case
study, rules of this form are selectively applied only for residuals for which an easily detected deviation is expected. By
using this strategy, the distinguishability of the faults can be improved, and the fault isolation times can be decreased.

The isolation rules implemented for ADAPT-Lite are summarized in Table 7. The table lists the components, the
sensors whose residuals must deviate, the time when the rule is fired (measured from the time of fault detection), and

15

Table 7: Heuristic Fault Isolation Rules

Component Residual Firing Time (s) QED QED-PC QED-PC++
AC483 rE265 40 X
AC483 rIT267 40 X X
CB236 rIS H236 0.2 X X
CB236 rE265 10 X X
CB262 rE265 10 X X X
CB266 rIT267 10 X X X
E265 Any 3 70 X
E265 rIT240 70 X
E281 Any 2 70 X
EY244 rES H244A 0.2 X X
EY244 rE265 10 X X
EY260 rE265 10 X X
EY260 rE281 10 X X
EY272 rIT267 40 X X X
EY272 rE265 40 X
EY275 rE265 30 X
EY275 rIT267 30 X X
EY275 rS T516 30 X X X
EY284 rIT281 10 X X X
FAN416 rE265 30 X
FAN416 rIT267 30 X X
FAN416 rS T516 30 X X X
INV2 rE265 10 X X X
IT267 Any 2 70 X
IT281 Any 2 70 X
Sensor S rS 60 X X

which algorithm the rule is applied to (represented using a check mark). The rules are to be read as, “if the candidate
concerns component C and the residual for sensor S has not deviated within T seconds since fault detection, then
eliminate the candidate”. For example, if CB236 is faulty, the sensor measuring its position, ISH236, is expected to
deviate almost immediately (within 0.2 s), and E265 to deviate within 10 s. If FAN416 is faulty, IT267 and ST516 are
expected to deviate within 30 s, and, for QED only, E265 to deviate within 30 s. For some sensor faults for QED-PC, a
certain number of residual deviations are expected to confirm a fault (see E265, E281, IT267, and IT281 in the table).
Also for QED-PC, a fault in any sensor is expected to cause a deviation in the residual for that sensor within 60 s, as
shown in the last row of the table. Note that for QED, this rule would be redundant because a sensor fault cannot be
generated as a candidate unless a deviation in that sensor’s residual is seen.

For QED-PC++, the system is diagnosable with the combined residual set, except for the known undistinguishable
faults, so none of the fault isolation rules are actually needed for unique isolation of faults. Some of the rules are still
kept, since they improve fault isolation times. For example, for QED a rule to rule out non sensor faults is needed if
after a significant amount of time only one residual has been observed to deviate; QED-PC++ does not require that rule
because multiple submodel-based residuals will deviate due to a sensor fault. Table 7 shows which rules are still used
for QED-PC++.

8. Fault Identification

The goal of fault identification is to, given a hypothesized fault f (consisting of a faulty component and its fault
mode), determine the parameters that define the fault. Identification is performed for each fault in the candidate list F
to produce a new candidate list Fid augmented with estimated fault parameters. Each of the algorithms use the same
approach.

16

As described in Section 4, each fault is mapped to a single parameter in the system model. For each parameter θ, we
have a known nominal value θ(t). When a fault occurs, it takes on some new profile, θ f (t) (offset, drift, or intermittent
offset). The goal of fault identification is to identify the signal θ f (t), and based on ∆θ = θ f (t) − θ(t), identify its specific
profile and the parameters defining that profile.

The faults that require identification are faults in the resistances Rac and Rdc, and sensor faults (fS for a sensor S).
We use structural model decomposition here in order to obtain minimal submodels that compute those parameters,
where the local output of the submodel is the parameter value (i.e., the θ f (t)), and the local inputs are measured signals
from the available sensors Y in the global model. Using the model decomposition algorithm, we obtain the submodels
shown in Table 8.

Table 8: Fault Identification Submodels for ADAPT-Lite

States (Xi) Parameters (Θi) Inputs (Ui) Outputs (Yi) Causal Assignments (Ai)
∅ fE281, fEY281, fIT281 yE281, uEY281, yIT281 Rdc vdc:=yE281 − bE281 − fE281

idc:=yIT281 − bIT281 − fIT281

sEY281:=uEY281 · fEY281

Rdc:=sEY281 · vdc/idc

∅ R f an, fCB266, fE265, yE265, uEY272, uEY275 Rac iac:=−i f an + irms

fEY272, fEY275 sEY272:=uEY272 · fEY272

i f an:=sEY275 · v4/R f an

v4:=sCB266 · vrms

sCB266:= fCB266

sEY275:=uEY275 · fEY275

vrms:=yE265 − bE265 − fE265

irms:= 1
√

2

∣∣∣∣√2i f an (cos φ + j sin φ) +
√

2iac

∣∣∣∣
Rac:=sEY272 · v4/iac

vo, vs fCB236, fIT240 uCB236, yE240, yIT240 fE240 v1:=sCB236 · vB

vB:=vo − vs

sCB236:= fCB236 · uCB236

vs:=
∫ t

t0
v̇s dt

v̇s:=(Rs · iB − vs)/Cs

vo:=
∫ t

t0
v̇o dt

iB:=−bIT240 − fIT240 + yIT240

v̇o:=−iB/C0

fE240:=−bE240 − v1 + yE240

∅ fE240, fEY244 uEY244, yE240, yE242 fE242 v2:=sEY244 · v1

v1:=−bE240 − fE240 + yE240

sEY244:= fEY244 · uEY244

fE242:=−bE242 − v2 + yE242

∅ fCB262, fE242, fEY260, uEY260, yE242, yE265 fE265 vrms:=120 · fINV2 · vinv

fINV2 vinv:=sCB262 · v3

sCB262:= fCB262

v3:=sEY260 · v2

v2:=−bE242 − fE242 + yE242

sEY260:= fEY260 · uEY260

fE265:=−bE265 − vrms + yE265

∅ fCB280, fE242, fEY260 uEY260, yE242, yE281 fE281 vdc:=sCB280 · v3

sCB280:= fCB280

v3:=sEY260 · v2

v2:=−bE242 − fE242 + yE242

sEY260:= fEY260 · uEY260

fE281:=−bE281 − vdc + yE281

∅ fCB262, fE242, fE265, uEY260, yE242, yE265, fIT240 iB:=iinv + idc

fEY260, fIT267, fIT281 yIT240, yIT267, yIT281 idc:=−bIT281 − fIT281 + yIT281

iinv:=irms · vrms/(e · vinv) + vinv/Rinv

17

irms:=−bIT267 − fIT267 + yIT267

vrm s:=−bE265 − fE265 + yE265

vinv:=sCB262 · v3

v3:=sEY260 · v2

sEY260:= fEY260 · uEY260

v2:=−bE242 − fE242 + yE242

sCB262:= fCB262

fIT240:=−bIT240 − iB + yIT240

∅ Rac,R f an, fCB266, uEY272, uEY275, yE265, fIT267 irms:= 1
√

2

∣∣∣∣√2i f an (cos φ + j sin φ) +
√

2iac

∣∣∣∣
fE265, fEY272, fEY275 yIT267 i f an:=sEY275 · v4/R f an

v4:=sCB266 · vrms

iac:=sEY272 · v4/Rac

sEY275:= fEY275 · uEY275

sEY272:= fEY272 · uEY272

sCB266:= fCB266

vrms:=−bE265 − fE265 + yE265

fIT267:=−bIT267 − irms + yIT267

∅ Rdc, fE281, fEY281 uEY281, yE281, yIT281 fIT281 idc:=sEY281 · vdc/Rdc

vdc:=−bE281 − fE281 + yE281

sEY281:= fEY281 · uEY281

fIT281:=−bIT281 − idc + yIT281

ω R f an, fCB266, fE265 yE265, yS T516 fS T516 ω:=
∫ t

t0
ω̇ dt

ω̇:=−ω/J f an + v4/(B f an · J f an · R f an)
v4:=sCB266 · vrms

sCB266:= fCB266

vrms:=−bE265 − fE265 + yE265

fS T516:=−bS T516 − ω + yS T516

TB ∅ yT E228 fT E228 TB:=
∫ t

t0
ṪB dt

ṪB:=0
fT E228:=−TB − bT E228 + yT E228

So, using these local submodels, we obtain for each fault f the history of θ f over [td, t]. Knowing the nominal value
θ(t), we can compute ∆θ(t), and by analyzing this signal, we can compute the parameter values of the fault profile as
follows:

• For stuck faults, the stuck value is taken as θ f (t).

• For offset faults, the offset value, ∆θ, is computed at time t as the mean of ∆θ over [td, t].

• For drift faults, for a given interval [t1, t2], the mean of ∆θ is computed over a window of n samples centered
at t1, ∆θ1, and at t2, ∆θ2. The slope is then computed as m1,2 = (∆θ2 − ∆θ1)/(t2 − t1). Three time intervals are
chosen: [td, (t + td)/2], [(t + td)/2, t], and [td, t], and the slope m is computed as the median of the three slopes
(∆θ1, ∆θ2, and ∆θ3 in the figure). Taking the mean of ∆θ over the interval endpoints and taking the median of
computed slope values helps improve the robustness.

• For intermittent offset faults, a limit l. above which ∆θ(t) is considered faulty and below which is considered
nominal, is used. The limit l is typically chosen as within 1-2% of the nominal value of y(t) or θ(t). The approach
steps through the signal ∆θ(t), and maintains two counters kn and k f . Each time a transition from a nominal
value to a faulty value occurs, k f is incremented, and when a transition from a faulty value to a nominal value
occurs, kn is incremented. In effect, these two counters keep track of the number of times the signal was faulty
and nominal. For each new nominal value, a second counter τn, that keeps track of the total amount of time the
signal is nominal, is incremented. Similarly, for each new faulty value, a counter τ f , that keeps track of the total
amount of time it is faulty, is incremented. A variable v f , that keeps track of the sum of all faulty values, is also

18

td

Δθ(t)

Δθ1

(t+td)/2 t

Δθ2

Δθ3

Figure 6: Identification of drift faults.

incremented. Then, the fault parameters are

µ∆p =
v f

τ f
, µ f =

τ f

k f
, µn =

τn

kn
.

In addition to the parameter values of the fault profiles listed above, for each fault, we also compute the fault
injection time. For offset, stuck, and intermittent faults, we take the fault injection time t f = td. For drift faults, since
we have the slope m1,2 and the current value of the parameter θ f , we can compute the time when θ f crossed zero. Since
there is always a delay in detecting drift faults, we expect to find t f < td. However, due to noise and errors in the
identification of the slope, the computed fault injection time is sometimes computed to also be before the actual fault
injection time.

Fault identification is also used to improve fault isolation. Each candidate is represented by a faulty parameter with
a proposed fault profile. If the identification results are inconsistent with the proposed profile, we can either eliminate
the candidate or change its profile to a consistent one. To do this, we have implemented consistency tests for each fault
profile. For example, if the proposed profile is an offset but we find that it has a significant slope, then it cannot be an
offset fault and is likely a drift fault. The proposed fault profile will change according to the results of these tests, and if
all tests fail, the candidate is eliminated entirely. Candidates can also be eliminated if the identified parameters are
invalid (e.g., if an estimated resistance value is negative).

9. Decision Making

As shown in Fig. 2, at the end of the scenario, the decision whether to abort or continue the mission must be
made. The fault identification module computes a candidate set Fid, with each f ∈ Fid being defined by the component,
its fault mode, and the associated fault parameters. The deciion maker implements a function DM(f) which, for a
given fault, computes a recommended command c. In ADAPT-Lite either c = abort (i.e., abort the mission) or no
command is provided (i.e., continue the mission). Table 1 summarizes the abort recommendation for each fault mode
in ADAPT-Lite.

The cost of the decision (abort or continue) is zero when the correct command is chosen. If the algorithm
recommends abort when the mission should be continued, the associated cost is 25, which is defined to be the cost of
the mission. If the algorithm recommends to continue when it should have been aborted, the associated cost is 125
which is the cost of the mission, 25, plus the cost of the vehicle, defined to be 100. Therefore, the conservative approach
is taken and abort is recommended if DM(f) = abort for at least one f ∈ Fid. In the case that a fault was detected
but all candidates were eliminated, then one may assume either a false positive, or a true positive with incorrect fault
isolation. The latter is assumed, and in this case, the approach again conservatively recommends an abort. A decision
to abort or continue is made at 4 minutes into the mission for this case study.

10. Experimental Results

In this section, the QED, QED-PC, and QED-PC++ algorithms are applied to real experimental data collected from
the ADAPT hardware. The data was provided as part of the Fourth International Diagnostics Competition [9]. First, the

19

0 50 100 150 200 250
23

24

25

26

27

28

29

Time (s)

E
24

2
(G

lo
ba

l)

Measured

Predicted

Figure 7: Measured and predicted values of E242 (global model) for E242 drift fault.

0 50 100 150 200 250
23

24

25

26

27

28

29

Time (s)

E
24

2
(P

C
)

Measured

Predicted

Figure 8: Measured and predicted values of E242 (local submodel) for E242 drift fault.

algorithms are demonstrated on some sample fault scenarios to show how online diagnosis works. Then, overall results
are presented on both training and validation data sets, followed by an analysis of the results and a discussion of ways
in which the algorithms could be improved. The algorithms are implemented using C++ with the memory requirements
being linear in the number of sensors.

10.1. Demonstration of the Approach

In order to demonstrate the differences between the diagnosers, a demonstration scenario in which a drift fault in
E242 is injected at 175 s with a slope of 0.075 V/s is described. Measured and predicted values for relevant outputs are
shown in Figs. 7–10. QED detects the fault at 176.7 s, with an increase in the E242 residual. At this point, the possible
faults are in AC483, CB262, DC485, E242, EY260, EY272, EY275, EY284, FAN416 (failed off or underspeed), and
INV2. At 176.9 s, the stuck mode of E242 is eliminated since consecutive measurements were of different values. At
177.1 s, the discrete change symbol is computed as X, which does not change the candidate list. At 179.2 s, the slope
of E242 is computed as +, eliminating all candidates but AC483 resistance drift, DC485 resistance drift, and E242
drift. At 220 s, since only one residual had deviated, it is concluded to be a sensor fault and E242 drift is isolated. The
injection time is computed as 169.8 s and the magnitude as 0.069 V/s. The recommended action is ∅, which is correct.

QED-PC detects the fault at 178.1 s on the PC for E242. The thresholds for the residuals generated by the local
submodels are larger, so, as expected, fault detection is slower than with QED. The initial candidate list consists only of
faults in E240 and E242, since the remaining faults are decoupled from the E242 residual by the local submodel design.
This is in contrast to QED, where most components except sensors were implicated with the first residual deviation.
At 178.3 s, it is determined that neither E240 or E242 are stuck. At 182.1 s the discrete change symbol for E242 is
computed as X, which does not change the candidate list. At 182.1 s, a decrease in the E281 submodel residual and
increase in the IT240 submodel residual are detected, isolating the fault to E242 (drift or offset). At 183.1 s, the slope
on E242 is computed as +, therefore isolating a drift in E242 as the fault. The injection time is computed as 169.7 s,
and the slope as 0.069 V/s. The recommended action is ∅.

QED-PC++ detects the fault at 176.7 s with the E242 global model residual. The initial candidate list is the same
as with QED; the candidate faults are in AC483, CB262, DC485, E242, EY260, EY272, EY275, EY284, FAN416

20

0 50 100 150 200 250
22

23

24

25

26

27

28

Time (s)

E
28

1
(P

C
)

Measured

Predicted

Figure 9: Measured and predicted values of E281 (local submodel) for E242 drift fault.

0 50 100 150 200 250
14.5

15

15.5

16

16.5

17

17.5

Time (s)

IT
24

0
(P

C
)

Measured

Predicted

Figure 10: Measured and predicted values of IT240 (local submodel) for E242 drift fault.

(failed off or underspeed), and INV2. At 176.9 s, it is determined that E242 is not stuck. At 177.1 s, the discrete change
symbol for E242 is computed as X, and the candidate list remains unchanged. At 178.1 s, an increase in the residual
for the E242 submodel is detected, thus eliminating all candidates except for faults in E242. Thus, fault isolation is
completed far earlier than QED (about 30 s), and also earlier than QED-PC (about 5 s). The fault is computed as a drift
with an injection time of 169.8 s and a slope of 0.069 V/s. The recommended action is ∅.

10.2. Summary of Results
The set of experimental data is split into two sets, one for training (228 scenarios) and one for validation (115

scenarios). In order to evaluate the performance of the diagnosis algorithms, the following set of metrics are used [8, 9]:
the mean time to detect faults M f d, which is the fault detection time minus the fault injection time; the false negative
rate M f n, which is the number of missed detections over the number of faulty scenarios; the false positive rate M f p,
which is the number of times a fault was detected when a fault was not present over the number of scenarios; detection
accuracy Mda, which is one minus the sum of false positives and false negatives over the number of scenarios; the mean
time to isolate faults M f i, which is the time the candidate list last changed minus the fault injection time; the number of
classification errors Merr, which is the Hamming distance between the true and diagnosed component mode vectors;
the mean CPU time Mcpu; the mean peak memory usage Mmem; and the overall recovery cost Mrc.

Overall results for the training data set are shown in Table 9. Ideally, the algorithms need to be tuned only with
respect to the fault detectors and symbol generators. While evaluating the algorithms on the training data, these are

Table 9: Diagnosis Results over Training Data Set

Diagnostic Algorithm M f d (s) M f n M f p Mda M f i (s) Merr Mcpu (ms) Mmem (kb) Mrc

QED 9.38 0.0152 0.0 0.987 125.61 19 22.72 7675 25

QED-PC 14.66 0.025 0.0 0.978 127.70 37 23.70 7743 275

QED-PC++ 9.32 0.0152 0.0 0.987 124.94 19 24.49 7835 25

21

Table 10: Diagnosis Results over Validation Data Set

Diagnostic Algorithm M f d (s) M f n M f p Mda M f i (s) Merr Mcpu (ms) Mmem (kb) Mrc

QED 3.70 0.0 0.0 1.00 72.00 27 10.70 7503 125

QED-PC 3.13 0.0 0.4087 0.5913 67.33 87 9.78 7689 1375

QED-PC++ 1.65 0.0 0.4435 0.5565 43.84 67 13.62 7850 1250

tuned to be as sensitive as possible without obtaining any false alarms. Some instances of spikes in the data are also
found, which are not considered to be faults and cause spurious false alarms. To filter out such data spikes, a median
filter over 3 samples is implemented.

Overall, all algorithms do very well after tuning. In the training data set, there are 12 unavoidable classification
errors due to the cases for the indistinguishable faults (e.g., DC485 failing versus its relay failing). For QED, the
remaining errors are due to incorrect fault mode identification (e.g., identifying as intermittent offset instead of drift)
and missed detections. The missed detections are acceptable, because the faults are small enough that the correct action
is ∅. Except in one case, the incorrect mode identification scenarios did not result in an incorrect recommendation.
The one scenario that did was one where the identified fault parameters were off just enough so that an abort was
recommended when the correct action was ∅, resulting in the recovery cost of 25.

QED-PC had similar errors, and also some additional ones in which the DC485 and IT281 faults were confused.
This is a difficult situation to correct, because the thresholds were difficult to tune. DC485 can only be uniquely isolated
if only IT281 deviates, so if additional deviations are seen, it can be concluded that it is an IT281 fault. However,
sometimes IT281 did not cause large enough deviations in other residuals so it was misdiagnosed as DC485. These
scenarios did not result in a bad recommendation, though. In two cases, QED-PC recommended ∅ when the correct
action was to abort. In the first case, an ST516 fault was misdiagnosed as an E265 fault. This error is due to threshold
sensitivities. In the second case, an ST516 intermittent offset fault was misdiagnosed as an offset fault, for which the
identified offset was not enough to trigger an abort recommendation.

QED-PC++ generally performed the same as QED. For the cases where the submodel-based residuals were not
analyzed correctly, the use of the global model residuals ended up being used for reasoning instead, and so QED-PC++
avoided the errors QED-PC had. QED-PC++ also had the best fault detection and fault isolation times. This was
expected since QED-PC++ has more residuals to use for fault detection and isolation.

Overall results for the validation data set are shown in Table 10. In this set of scenarios, there were 20 scenarios
in which errors are expected in fault isolation due to indistinguishable faults, so each algorithm can at best have 20
classification errors. For QED, there were no false positives, and 7 classification errors. The classification errors were
due in two cases to a misidentified component mode (offset instead of drift, and offset instead of intermittent offset),
resulting in 4 total errors, plus 3 cases in which all candidates were eliminated due to an incorrectly generated slope
symbol. None of these scenarios had an associated recovery cost. The 125 recovery cost came from one scenario in
which the fault was correctly detected and isolated, but the drift was underestimated, and so an abort decision was
missed. Fault detection and isolation times were overall lower than in the training scenarios, because on average the
fault magnitudes were larger, so faults were easier to detect, and there were relatively fewer drift faults, so, on average,
faults could be isolated faster.

For QED-PC, a significant increase in false positives occured. The majority of these scenarios were due to the
residual for E265. Upon further inspection, it was found that the noise characteristics for E265 between the training
and validation data sets were different (these data sets were gathered a year apart), i.e. a bias was introduced, and this is
not something the Z-test in its current implementation can account for. This resulted in many false positives on E265.
As a result, fault isolation was compromised in the scenarios in which the false alarm was obtained before isolation of
the true fault was completed. The performance of QED-PC was actually comparable to its performance on the training
data, omitting these cases. Additional false alarms appeared on IT267 (2 scenarios), IT240 (2 scenarios), and E242 (1
scenario), although these were more likely due to their detectors being too sensitive.

Because QED-PC++ used the same residual for E265 as QED-PC, it also had problems related to false alarms with
that residual. Because QED-PC++ also had the global model residuals to rely on, its performance is improved over
QED-PC. It also had the best overall fault detection and isolation times.

22

10.3. Lessons Learned
In this subsection, we present some lessons learned from the application of our algorithms on a real system that

highlighted some of the strengths and weaknesses of the algorithms. This helps to critically identify and evaluate the
shortcomings of the algorithms and explore potential solutions to address these shortcomings and improve the diagnosis
framework.

The diagnosis approach presented here offers many advantages. First and foremost, the approach is model-based.
Given a global model of the system, most aspects are generated automatically: generation of submodels for residual
generation and fault identification and generation of fault signatures and relative residual orderings. Some manual tuning
of parameters is required for the fault detectors, symbol generators, and the consistency tests for fault identification.
Fault isolation is fast, with the candidate set being reduced to a small number of candidates only a short time after
fault detection. This limits the amount of computation that must be performed by fault identification to only these few
candidates. Further, fault isolation is efficient through the use of local submodels.

Of course, all of these approaches are dependent on correct symbol generation for correct fault isolation, and
this turns out to be the source of most of the errors. Sensor noise makes correct symbol generation difficult. For the
submodel-based residuals, the effect of sensor noise is greater because (noisy) sensor values are used as local inputs.
The use of the Z-test attempts to mitigate the effect of noise, however, additional hand-tuning is typically required.
Even when hand-tuning is not required, symbols can still be incorrectly generated if the noise characteristics of the
sensor change compared to the training data used. This, in fact, is what happened with the submodel-based residual
for E265 with QED-PC and QED-PC++ in the validation data set. This was particularly problematic because for all
the sensor fault scenarios (about half the total number of scenarios), this false alarm was present. As a result, the
fault isolation was incorrect in many of these scenarios and this resulted in classification errors and recovery costs.
Incorrectly generated slope symbols, and false alarms on other sensors, also caused some diagnostic errors.

In addition, for the submodel-based residuals in particular, some fault detection thresholds were too sensitive. The
tuning of these thresholds is difficult, especially since both the presence of (i.e., through predicted fault signatures) and
the absence of (i.e., through the isolation rules) residual deviations for fault isolation are used. That is, in some cases a
change in a sensor needs to be detected in order to properly diagnose, and in other cases it is necessary to make sure the
detector does not fire when there is no change in the sensor. Perhaps a more robust approach is to resolve ambiguities
using only fault identification without relying on heuristic isolation rules, although this may increase fault isolation
times.

All of these issues related to symbol generation motivate the need for a more robust qualitative fault isolation
approach, in which there are probabilities associated with the correctness of generated symbols, and diagnostic
reasoning can be performed considering the case where the symbol was incorrectly generated and the associated
confidence in the generated symbols. Current work on that front is reported in [28].

Intermittent faults also introduced some issues. For one, intermittent faults detected as ++ (or --) are not accounted
for. Ideally, the symbol generators should have generated +- (or -+) and +0 (or -0) symbols for every time intermittent
faults surfaced, but this relies on a more explicit test for discontinuity detection. Second, the algorithms can benefit
from a more robust intermittent fault identification approach.

Because QED-PC++ makes use of both the global model residuals and the submodel-based residuals, it combines
the strengths of both residual sets. The first set is most useful for nonsensor faults, which affect many residuals and
therefore give a lot of information for fault isolation, and the second set is most useful for sensor faults, which affect
more residuals than nonsensor faults (for a good model decomposition) and therefore give a lot of information for fault
isolation for those types of faults. As observed in both the training and validation data sets, faster fault detection and
isolation is seen with the combined residual set. Using both residual sets also eliminated most of the heuristic fault
isolation rules, reducing another potential source of diagnostic errors due to problems tuning the time periods used in
those rules.

11. Related Work

A variety of other diagnosis approaches have also been applied to ADAPT. Only one other was tested on the same
data set, so we try here to make a fair comparison with the available metrics.

An approach similar to ours is described in [29], which shares the same qualitative fault isolation methodology,
but without residual orderings. A key difference is that the different fault profiles are isolated directly within the fault

23

detectors. The correct fault was detected and isolated 60% of the time. Like our approach, tuning the fault detectors
properly becomes critical, as errors in this step propagate to reasoning.

Component models similar to ours are used in [30], and ARRs are derived for a subset of ADAPT-Lite. Changes
in residual values associated to ARRs are used to diagnose the system mode and faults that have occurred, and so
must precompute ARRs for each mode of the system. Since only single faults are considered and all mode changes
correspond to faults in ADAPT-Lite, really only a subset of these ARRs are needed. Only a limited comparison to a
previous incarnation of QED was performed, finding that this approach had similar fault detection times for abrupt
faults.

In [31], a model-based diagnosis approach implemented using the Testability Engineering and Maintenance System
(TEAMS) [32], is applied. TEAMS is based on functional fault modeling, and computes, similar to ARRs, a dependency
matrix of ones and zeros that stores which faults affect which test points. Unlike ARRs and PCs, the tests may not
correspond directly to residuals and are constructed by hand. This approach was applied to the entire ADAPT system,
but relative to QED had worse fault detection and isolation performance. This could be improved with better tests,
but the advantage of an approach like QED is that the tests are defined automatically in a specific way (i.e., based
on residuals). A similar approach to [31] was followed in [33], where manually created tests were constructed and
fault isolation was performed based on the test results. Fault isolation performance was very accurate, but with a false
positive rate of 25% and a false negative rate of 7%.

A classification approach using artificial immune systems was applied to ADAPT-Lite in [34]. Nominal data was
used to train a set of detectors. The set of triggered detectors was then used to isolate the faults. The approach detects
faults about six times slower than QED, but isolates faults about twice as fast. Despite this, the approach had about
50% more fault isolation errors than QED, but the number of errors was still relatively low.

An approach that diagnoses faults in the dc subsystem based on convex optimization is employed in [35]. Diagnostic
metrics are not provided. In contrast to such purely quantitative approaches, the main idea of QED is to start first
with a quick fault isolation step that decreases significantly the size of the remaining quantitative problem (i.e., fault
identification). As systems increase in size, purely quantitative approaches become more difficult to apply.

In [36], conflict-driven fault detection and isolation is performed. The inference engine is a constraint solver
that checks whether a solution exists, computing every solution that explains the available observations. In a similar
approach, the Hybrid Diagnosis Engine (HyDE) [37] was applied to the full ADAPT system in [38]. HyDE is a
model-based diagnosis engine which generates conflicts (and eventually fault candidates) by using consistency between
the model predictions and the system observations. A HyDE model may use boolean, discrete, real, or interval-valued
variables to describe the behavior of a system. In [38], a steady-state model was developed, and so was very slow in
fault detection and isolation, yielding only a 24% detection accuracy when applied to ADAPT-Lite with the DXC data.
HyDE was also applied to the same data set used in this paper, having significantly higher costs (2650 total), due to
having almost five times as many diagnostic errors. Many of these errors are due to the use of a steady-state model, and
one would expect HyDE’s performance to improve significantly with the model used by QED.

Steady-state diagnosis was also performed in [39], resulting in static diagnosis problems that were solved with
Reiter’s approach [40]. Steady-state approaches have simple fault isolation algorithms, but at the cost of delayed fault
detection. Further, some faults cannot be identified using only the steady states (e.g., drift faults).

Probabilistic diagnosis algorithms are used in [41], using discrete and static Bayesian network models that are
compiled with arithmetic circuits, which derive marginal probabilities using addition and multiplication operations.
The approach can handle multiple faults, and achieved 96% diagnosis accuracy on its test data. A problem with this
approach is that the reasoning is so simple that much effort has to be placed into careful development and tuning of the
Bayesian models. With an approach like QED, the model already has much embedded information for reasoning, so
less effort is expended on fine-tuning it (the fine-tuning, which is relateively less effort, moves to the fault detectors and
symbol generators).

12. Conclusions

In this work, we developed a model-based diagnosis architecture that combines qualitative fault isolation and
quantitative fault identification. From the diagnostic framework, three alternative algorithms are instantiated, one which
uses the global model of the system (QED), one which uses model decomposition to derive local submodels (QED-PC),

24

and one which combines both the global model and local submodels (QED-PC++). The different approaches are
applied to the ADAPT system, and several enhancements in the framework are developed, such as stuck fault detection,
heuristic fault isolation rules, and intermittent fault diagnosis. These new enhancements can be easily applied to other
model-based fault diagnosis approaches as well.

Overall, the algorithms did very well on the case study. All approaches had very good fault detection and isolation.
For the training data set, fault isolation and identification was good enough that QED and QED-PC++ never neglected to
command an abort when it was necessary, and QED-PC only missed an abort command twice (out of 227 experiments).
For the validation data set, QED performed very well, but QED-PC and QED-PC++ suffered, because the noise
characteristics of one sensor changed enough to cause a number of false alarms, leading to several fault isolation errors,
and, as a result, incorrect recovery recommendations. Although this is an easy issue to resolve, it still motivates the
need for a more robust approach to fault isolation that can handle occasional incorrect symbol generation.

In the future, these algorithms will be applied to larger systems, e.g., the complete ADAPT system. ADAPT is a
hybrid system, and can have multiple faults. Hence, in the future, the current approaches will be extended to diagnosis
of hybrid systems, and multiple fault diagnosis. Additionally, ongoing work is investigating more robust fault isolation
frameworks.

References

[1] J. Chen, R. Patton, Robust model-based fault diagnosis for dynamic systems, Kluwer Academic Publishers, Norwell, MA, USA, 1999.
[2] R. Patton, P. Frank, R. Clark, Issues of Fault Diagnosis for Dynamic Systems, Springer, 2000.
[3] R. Isermann, Supervision, Fault-Detection and Fault-Diagnosis Methods - An Introduction, Ctrl. Eng. Practice 5 (5) (1997) 639–652.
[4] J. Gertler, Fault Detection and Diagnosis in Engineering Systems, Marcel Dekker, Inc., 1998.
[5] P. Goupil, Oscillatory failure case detection in the A380 electrical flight control system by analytical redundancy, Control Engineering Practice

18 (9) (2010) 1110 – 1119.
[6] P. Goupil, Airbus state of the art and practices on FDI and FTC in flight control system, Control Engineering Practice 19 (6) (2011) 524 – 539.
[7] S. Poll et al., Evaluation, selection, and application of model-based diagnosis tools and approaches, in: AIAA Infotech@Aerospace 2007

Conference and Exhibit, 2007.
[8] T. Kurtoglu, S. Narasimhan, S. Poll, D. Garcia, L. Kuhn, J. de Kleer, A. van Gemund, A. Feldman, First international diagnosis competition –

DXC’09, in: Proceedings of 20th International Workshop on Principles of Diagnosis, 2009, pp. 383–396.
[9] A. Sweet, A. Feldman, S. Narasimhan, M. Daigle, S. Poll, Fourth international diagnostic competition – DXC’13, in: Proc. of the 24th Intl.

Workshop on Principles of Diagnosis, 2013, pp. 224–229.
[10] P. J. Mosterman, G. Biswas, Diagnosis of continuous valued systems in transient operating regions, IEEE Trans. on Systems, Man and

Cybernetics, Part A 29 (6) (1999) 554–565.
[11] M. J. Daigle, X. Koutsoukos, G. Biswas, A qualitative event-based approach to continuous systems diagnosis, IEEE Trans. on Control Systems

Technology 17 (4) (2009) 780–793.
[12] H. Thompson, Parallel processing architectures for aerospace applications, Ctrl. Engineering Practice 2 (3) (1994) 509 – 520.
[13] A. Bregon, M. Daigle, I. Roychoudhury, G. Biswas, X. Koutsoukos, B. Pulido, An event-based distributed diagnosis framework using structural

model decomposition, Artificial Intelligence 210 (2014) 1–35. doi:http://dx.doi.org/10.1016/j.artint.2014.01.003.
[14] S. Arogeti, D. Wang, C. B. Low, M. Yu, Fault detection isolation and estimation in a vehicle steering system, IEEE Transactions on Industrial

Electronics 59 (12) (2012) 4810–4820. doi:10.1109/TIE.2012.2183835.
[15] M. Fravolini, G. Campa, Design of robust redundancy relations for a semi-scale yf-22 aircraft model, Control Engineering Practice 17 (7)

(2009) 773 – 786.
[16] B. Pulido, C. Alonso-González, Possible conflicts: a compilation technique for consistency-based diagnosis, IEEE Trans. on Systems, Man,

and Cybernetics, Part B 34 (5) (2004) 2192–2206.
[17] S. Arogeti, D. Wang, C. B. Low, Mode identification of hybrid systems in the presence of fault, IEEE Transactions on Industrial Electronics

57 (4) (2010) 1452–1467. doi:10.1109/TIE.2009.2030213.
[18] A. Bregon, G. Biswas, B. Pulido, A decomposition method for nonlinear parameter estimation in TRANSCEND, IEEE Trans. Syst. Man. Cy.

Part A 42 (3) (2012) 751–763.
[19] M. Daigle, A. Bregon, I. Roychoudhury, Qualitative event-based diagnosis with possible conflicts applied to spacecraft power distribution

systems, in: Proceedings of the 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, 2012, pp. 265–270.
[20] S. Poll, A. Patterson-Hine, J. Camisa, D. Garcia, D. Hall, C. Lee, O. Mengshoel, C. Neukom, D. Nishikawa, J. Ossenfort, A. Sweet, S. Yentus,

I. Roychoudhury, M. Daigle, G. Biswas, X. Koutsoukos, Advanced diagnostics and prognostics testbed, in: Proceedings of the 18th International
Workshop on Principles of Diagnosis, 2007, pp. 178–185.

[21] I. Roychoudhury, M. Daigle, A. Bregon, B. Pulido, A Structural Model Decomposition Framework for Systems Health Management, in:
Proceedings of the 2013 IEEE Aerospace Conference, 2013.

[22] M. Ceraolo, New dynamical models of lead-acid batteries, IEEE Trans. on Power Systems 15 (4) (2000) 1184–1190.
[23] G. Biswas, G. Simon, N. Mahadevan, S. Narasimhan, J. Ramirez, G. Karsai, A robust method for hybrid diagnosis of complex systems, in:

Proceedings of the 5th Symposium on Fault Detection, Supervision and Safety for Technical Processes, 2003, pp. 1125–1131.
[24] M. Daigle, I. Roychoudhury, G. Biswas, X. Koutsoukos, A. Patterson-Hine, , S. Poll, A comprehensive diagnosis methodology for complex

hybrid systems: A case study on spacecraft power distribution systems, IEEE Transactions of Systems, Man, and Cybernetics, Part A 4 (5)
(2010) 917–931.

25

[25] C. H. Lo, Y. Wong, A. Rad, Intelligent system for process supervision and fault diagnosis in dynamic physical systems, IEEE Trans. on
Industrial Electronics 53 (2) (2006) 581–592. doi:10.1109/TIE.2006.870707.

[26] M. Cordier, P. Dague, F. Lévy, J. Montmain, M. Staroswiecki, L. Travé-Massuyès, Conflicts versus Analytical Redundancy Relations: a
comparative analysis of the Model-based Diagnosis approach from the Artificial Intelligence and Automatic Control perspectives, IEEE Trans.
on Systems, Man, and Cybernetics. Part B: Cybernetics 34 (5) (2004) 2163–2177.

[27] J. de Kleer, J. Kurien, Fundamentals of model-based diagnosis, in: Proceedings of the 5th IFAC Symposium on Fault Detection, Supervision
and Safety for Technical Processes, Washington D.C., USA, 2003, pp. 25–36.

[28] M. Daigle, I. Roychoudhury, A. Bregon, Qualitative event-based fault isolation under uncertain observations, in: Annual Conference of the
Prognostics and Health Management Society 2014, 2014, pp. 347–355.

[29] J. D. Carl, D. L. C. Mack, A. Tantawy, G. Biswas, X. D. Koutsoukos, Fault isolation for spacecraft systems: An application to a power
distribution testbed, in: Proceedings of the 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Mexico
City, Mexico, 2012, pp. 168–173.

[30] M. Maiga, E. Chanthery, L. Trave-Massuyes, Hybrid system diagnosis: Test of the diagnoser hydiag on a benchmark of the international
diagnostic competition dxc 2011, in: Proceedings of the 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical
Processes, SAFEPROCESS12, Mexico City, Mexico, 2012, pp. 271–276.

[31] M. Wilson, T. Kurtoglu, TRT4ADAPT - a model-based algorithm for the second international diagnostic competition, in: Proc. of the 21st
International Workshop on Principles of Diagnosis, Portland, OR, 2010, pp. 387–394.

[32] K. Pattipati, V. Raghavan, M. Shakeri, S. Deb, R. Shrestha, Teams: testability engineering and maintenance system, in: American Control
Conference, 1994, Vol. 2, 1994, pp. 1989–1995.

[33] E. Almqvist, D. Eriksson, A. Lundberg, E. Nilsson, N. Wahlstrom, E. Frisk, M. Krysander, Solving the ADAPT benchmark problem: A student
project study, in: Proceedings of the 21st International Workshop on Principles of Diagnosis, Portland, OR, 2010, pp. 153–160.

[34] J. Mange, D. Daniszewski, , A. Dunn, Artificial immune systems for diagnostic classification problems, in: Proc. of the 22nd International
Workshop on Principles of Diagnosis, Murnau, Germany, 2011, pp. 279–284.

[35] D. Gorinevsky, S. Boyd, S. Poll, Estimation of faults in dc electrical power system, in: American Control Conference, 2009, pp. 4334–4339.
[36] P. Bunus, O. Isaksson, B. Frey, B. Munker, RODON: A model-based diagnosis approach for the DX diagnostic competition, in: Proceedings of

the 20th International Workshop on Principles of Diagnosis, Stockholm, Sweden, 2009, pp. 423–430.
[37] S. Narasimhan, L. Brownston, HyDE–a general framework for stochastic and hybrid model-based diagnosis, Proc. of the 18th Intl. Workshop

on Principles of Diagnosis (2007) 162–169.
[38] A. Sweet, Testing HyDE on ADAPT, Tech. Rep. NASA/TM 2008-214570, NASA Ames Research Center, Moffet Field, CA, USA (2008).
[39] A. Grastien, P. Kan-John, Wizards of oz: Description of the 2009 DXC entry, in: Proceedings of the 20th International Workshop on Principles

of Diagnosis, Stockholm, Sweden, 2009, pp. 409–413.
[40] R. Reiter, A theory of diagnosis from first principles, Artificial intelligence 32 (1) (1987) 57–95.
[41] B. Ricks, O. Mengshoel, The diagnostic challenge competition: Probabilistic techniques for fault diagnosis in electrical power systems, in:

Proceedings of the 20th International Workshop on Principles of Diagnosis, Stockholm, Sweden, 2009, pp. 415–422.

26

