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Abstract—The operations of a planetary rover depend critically
upon the amount of power that can be delivered by its bat-
teries. In order to plan the future operation of the rover, it
is important to make reliable predictions regarding the end-
of-discharge time, which, in turn, can be used to estimate the
remaining driving time and distance of the rover. In addition,
quantifying the uncertainty in these predictions is critical to
making risk-informed decisions regarding the operations of the
rover. This paper presents a computational methodology to
stochastically predict end-of-discharge time, remaining driving
time, and remaining driving distance for a planetary rover,
based on monitoring the batteries that power the rover. We
utilize a model-based prognostics framework that characterizes
and incorporates the various sources of uncertainty into these
predictions, thereby assisting operational decision-making. We
consider two different types of driving scenarios, structured
and unstructured driving, and characterize the uncertainty they
create in the future usage of the rover. In structured driving,
the rover navigates among a set of known waypoints, and in
unstructured driving, the rover performs a sequence of un-
planned maneuvers. Results from a set of field experiments
illustrate these computational methods and demonstrate their
applicability.
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1. INTRODUCTION
Autonomous planning integrates the two problems of search
and prediction in order to find feasible sequences of actions
and behaviors [1]. For planetary rovers exploring an envi-
ronment, the plans depend on how much longer the batteries
can discharge, and, consequently, how much remaining time
and distance that the rover can drive [2–7]. Whereas in the
robotics field significant effort has been expended on the
search problem, relatively little has been expended on the
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prediction problem. In order to make accurate predictions,
a high-fidelity battery health monitoring (BHM) system is
needed, capable of estimating the state of charge and pre-
dicting end of discharge (EOD). BHM has been receiving
increased attention in recent years, due to the increasingly
widespread presence of electric cars and aircraft [8, 9]. How-
ever, in order to predict remaining driving time and distance
for the rover, the BHM system must be placed in the context
of the rover system as a whole [10].

In order to solve the prediction problem, the general frame-
work of model-based prognostics may be used [11–13]. In
this framework, we develop a model of the system (e.g.,
the rover), and use model-based algorithms to estimate the
current system state and predict its future evolution. Specif-
ically, the algorithms are focused on the prediction of some
system event, which, in this context, is EOD. The advantage
of a model-based approach is that, going from one system to
another, the algorithms remain the same while only the model
changes. Model-based prognostics approaches have been
applied to a wide range of components and systems, from
single components such as capacitors [14], valves [15, 16],
and pumps [11], to larger systems such electric aircraft [17]
and electric cars [7].

In the context of planetary rovers, in previous work we
developed a BHM framework using model-based prognos-
tics [18]. The main contribution of this work was the use
of a high fidelity, computationally efficient electrochemistry-
based battery model. Using this model, highly accurate EOD
predictions, given known future power demands, were de-
livered, however, system-level predictions such as remaining
driving time and remaining driving distance, which would be
much more useful to a system operator or automated planner,
were not predicted. Further, only a very simple model of
future power demands was considered. In prognostics, it is
just as important to accurately model the system itself as to
quantify the uncertainty associated with predictions, and, in
many cases, the most significant source of uncertainty is the
future loading to the system [19–21].

In this work, we extend the rover BHM framework developed
in [18] in two significant ways. First, we extend the model-
based prognostics framework for prediction of both the time
of the system event to be predicted (here, EOD) and the value
of system variables at that time (here, remaining driving time
and distance). Second, we employ recent advances in un-
certainty characterization and quantification for prognostics
in order to produce predictions that more accurately capture
the prediction uncertainty [22]. We show how these new
methods can be generally applied to two different driving
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scenarios: structured driving, in which the rover travels along
a predetermined set of waypoints, and unstructured driving,
in which the rover is driven freely by random sequences of
maneuvers.

The paper is organized as follows. Section 2 describes the
model-based prognostics framework. Section 3 summarizes
the system modeling for prognostics. Sections 4 and 5 dis-
cuss the estimation and prediction approaches, respectively.
Section 6 presents the experimental results, and Section 7
concludes the paper.

2. MODEL-BASED PROGNOSTICS
In this section, we formulate the prognostics problem, extend-
ing the framework presented in [18, 22]. We then provide a
computational architecture for model-based prognostics that
will be applied to the rover.

Problem Formulation

We assume the system model may be generally defined as

x(k + 1) = f(k,x(k),θ(k),u(k),v(k)), (1)
y(k) = h(k,x(k),θ(k),u(k),n(k)), (2)

where k is the discrete time variable, x(k) ∈ Rnx is the
state vector, θ(k) ∈ Rnθ is the unknown parameter vector,
u(k) ∈ Rnu is the input vector, v(k) ∈ Rnv is the process
noise vector, f is the state equation, y(k) ∈ Rny is the output
vector, n(k) ∈ Rnn is the measurement noise vector, and h
is the output equation.2 The unknown parameter vector θ(k)
is used to capture explicit model parameters whose values are
unknown and time-varying stochastically.

Prognostics is concerned with predicting the occurrence of
some event E that is defined with respect to the states,
parameters, and inputs of the system. We define the event
as the earliest instant that some event threshold TE : Rnx ×
Rnθ × Rnu → B, where B , {0, 1}, changes from the value
0 to 1. That is, the time of the event kE at some time of
prediction kP is defined as

kE(kP ) , inf{k ∈ N : k ≥ kP ∧ TE(x(k),θ(k),u(k)) = 1}.
(3)

The time remaining until that event, ∆kE , is defined as

∆kE(kP ) , kE(kP )− kP . (4)

We may also be interested in predicting the values of system
variables, z, at time kE . The variables z are expressed as a
function of the system states, parameters, and inputs:

z(k) = g(k,x(k),θ(k),u(k)), (5)

where g is a function mapping the states, parameters, and
inputs to these variables. We may also need to predict
∆z(kE), defined as

∆z(kE) = z(kE)− z(kP ). (6)

2Bold typeface denotes vectors, and na denotes the length of a vector a.

Uncertainty Representation

The system evolves stochastically due to (i) the process
noise v(k) and (ii) the future inputs to the system, u(k)
for k > kP , which are, in general, uncertain. Thus, kE
and its derived variables are random variables, and we must
compute the probability distribution p(kE(kP )|y(k0:kP )),
where y(k0:kP ) denotes the system outputs from time k0 to
kP [20, 23]. Further, additional uncertainty arises due to lack
of knowledge of the system, namely, (i) the initial state at
time kP , x(kp); and (ii) the unknown parameters θ(k).

So, in order to compute kE and its derived variables, we need
estimates of (i) the initial state at time kP , x(kp); (ii) the
parameter values θ(k) for all k ≥ kP , denoted as ΘkP (the
subscript kP indicates the start time of the trajectory); (iii)
the inputs u(k) for all k ≥ kP , denoted as UkP ; and (iv) the
process noise v(k) for all k ≥ kP , denoted as VkP [22].

In order to make a prediction that accounts for this uncer-
tainty, we require the probability distributions p(x), p(ΘkP ),
p(UkP ), and p(VkP ) to be defined, and this is part of the
modeling problem. Because it is often difficult to describe
the probability distribution of a trajectory directly, we use the
method of surrogate variables to define them indirectly, as
introduced in [22]. For describing the probability distribution
of a generic trajectory Ak, we introduce a set of surrogate
random variables λa = [λ1a λ

2
a . . .]. We describe a trajectory

using λa and instead define p(λa), which in turn defines
p(Ak). These surrogate variables can be used to describe
trajectories in many ways. For the parameter, input, and
process noise trajectories we have the surrogate variables λθ,
λu, and λv . Additional discussion on the use of surrogate
variables can be found in [22].

Prognostics Architecture

We adopt a model-based prognostics architecture [11, 22],
in which there are two sequential problems, (i) the esti-
mation problem, which requires determining a joint state-
parameter estimate p(x(k),θ(k)|y(k0:kP )) based on the
history of observations up to time k, y(k0:kP ), and (ii)
the prediction problem, which determines at kP , using
p(x(k),θ(k)|y(k0:kP )), p(λθ), p(λu), and p(λv), a prob-
ability distribution p(kE(kP )|y(k0:kP )), as well as those for
∆kE , z(kE) and ∆z(kE).

The prognostics architecture is shown in Fig. 1. In dis-
crete time k, the system is provided with inputs uk and
provides measured outputs yk. The estimation module uses
this information, along with the system model, to compute
an estimate p(x(k),θ(k)|y(k0:k)). The prediction module
uses the joint state-parameter distribution and the system
model, along with the distributions for the surrogate vari-
ables, p(λθ), p(λu), and p(λv), to compute the probability
distribution p(kE(kP )|y(k0:kP )), p(∆kE(kP )|y(k0:kP )),
p(z(kE)|y(k0:kP )), and p(∆z(kE)|y(k0:kP )) at given pre-
diction times kP . We describe an approach to solve the
estimation problem in Section 4, and an approach for the
prediction problem in Section 5.

3. ROVER MODELING FOR PROGNOSTICS
The system model for prognostics must include the system
dynamics, as defined by the states, inputs, outputs, process
noise, sensor noise, state equation, and output equation.
For prediction purposes, it must also include a definition of
the system event to be predicted, E, and the corresponding
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Figure 1. Prognostics architecture.

threshold function, TE , along with descriptions of the future
process noise, uknown parameters, and input trajectory dis-
tributions.

For the rover, we want to be able to predict when its batteries
reach EOD; this defines the event E. Typically, EOD is
described using a voltage threshold VEOD, such that EOD
has occurred once the battery voltage V has reached VEOD,
i.e., TE evaluates to 1 when V ≤ VEOD.

At the time of event E, we want to know the remaining
driving time, ∆td, defined as the amount of remaining time
until EOD that the rover can be driven, and the remaining
driving distance ∆dd, defined as the remaining distance until
EOD that can be traveled by the rover. These particular
quantities are useful to an operator or an automated planner,
because they describe how much longer the rover can be
operated and how much distance it is able to cover in that
time.

In order to predict these quantities, we need to develop a
model of the rover as a system that includes its kinematics
(to compute td, dd, and the power demanded from the bat-
teries) and the dynamics of the batteries (to compute voltage
and predict EOD). We describe this model in the following
subsections, followed by representations of the sources of
uncertainty.

Rover Kinematics

We consider a four-wheel skid-steered rover, in which the
speeds of the two left-side wheels are always commanded to
the same speed, and the speeds of the two right-side wheels
are always commanded to the same speed. The rover moves
straight when these speeds are the same and turns when these
speeds are different. Therefore, the inputs to the rover are uL,
the left-side speed, and uR, the right-side speed.

We assume that the dynamics of the control system are
sufficiently fast such that the actual wheel speeds are approx-
imately equal to the commanded speeds, i.e., vL = uL and
vR = uR. Given the velocities vL and vR, driving distance,
dd(k), is computed using:

dd(k + 1) = dd(k) +
vL + vR

2
∆t, (7)

where ∆t is the sampling time. Driving time, td(k), is simply
described using:

td(k + 1) = td(k) +

(
vL + vR

2
> 0

)
∆t. (8)

Given wheel speeds vL and vR, the power demanded from

the batteries, PB , is approximated by the linear relationship

PB(k) =
vL + vR

2
∗ gb + bb, (9)

where gb and bb are empirical parameters determined from
rover field data.

Battery Modeling

The rover electrical power system consists of 24 batteries,
with two parallel branches of 12 batteries in series [5, 24].
Each lithium-ion battery produces around 4 V, leading to
a total output of 48 V supplied to the rover motors. We
use the electrochemistry battery model originally developed
in [25], which describes how the internal charge moves within
the battery, given current as an input, and how voltage is
computed based on the internal charge. We summarize the
main details here, and refer the reader to [25] for additional
details and model parameter values. The battery model has
been validated with data from the rover operating in the field
(see [18]).

The battery is divided into two electrodes, the positive (sub-
script p) and the negative (subscript n). Each electrode is split
into two control volumes, a bulk volume (subscript b) and a
surface layer (subscript s). As the battery discharges, Li ions
move from the surface layer at the negative electrode, through
the bulk, and to the surface layer at the positive electrode, in
order to match the flow of electrons. So, we have four states
representing charge (q), described by

q̇s,p = iapp + q̇bs,p, (10)
q̇b,p = −q̇bs,p + iapp − iapp, (11)
q̇b,n = −q̇bs,n + iapp − iapp, (12)
q̇s,n = −iapp + q̇bs,n, (13)

where iapp is the applied electric current. The flow of
charge between the surface and bulk volumes is driven by
diffusion based on Li ion concentration. The concentrations
are computed as

cb,i =
qb,i
vb,i

, (14)

cs,i =
qs,i
vs,i

, (15)

where, for control volume C in electrode i, cC,i is the
concentration and vC,i is the volume. The diffusion rate from
the bulk to the surface in electrode i is expressed as

q̇bs,i =
1

D
(cb,i − cs,i), (16)

where D is the diffusion constant.
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The battery voltage, which is comprised of several electro-
chemical potentials, is computed as a function of the charge
variables. These potentials include the equilibrium potential,
concentration overpotential, surface overpotential, and ohmic
overpotential [26]. The equilibrium potential is captured
using the Nernst equation:

VU,i = U0,i +
RT

nF
ln

(
1− xi
xi

)
+ VINT,i, (17)

where for electrode i, U0,i is a reference potential, R is the
universal gas constant, T is the electrode temperature (in K),
n is the number of electrons transferred in the reaction (n = 1
for Li-ion), F is Faraday’s constant, x is the mole fraction
of lithium ions in the lithium-intercalated host material [27].
Mole fraction xi is related to charge using

xi =
qi
qmax , (18)

where qmax = qp + qn refers to the total amount of available
Li ions. It follows that xp + xn = 1. In the Nernst equation,
VINT,i is the activity correction term for which we use the
Redlich-Kister expansion [27]:

VINT,i =
1

nF

(
Ni∑
k=0

Ai,k

(
(2xi − 1)k+1 − 2xik(1− xi)

(2xi − 1)1−k

))
.

(19)

The concentration overpotential is the difference in voltage
between the surface and bulk control volumes due to the
difference in concentration and is captured by using xs,i in
the expression for equilibrium potential.

The ohmic resistance is described using the constant Ro,
producing the ohmic overpotential:

Vo = iappRo. (20)

The surface overpotentials are described by the Butler-
Volmer equation, which, for Li ion batteries, reduces to

Vη,i =
RT

Fα
arcsinh

(
Ji

2Ji0

)
, (21)

where Ji is the current density, Ji0 is the exchange current
density, and α is the symmetry factor (0.5 for Li ion). The
current densities are defined as

Ji =
i

Si
, (22)

Ji0 = ki(1− xs,i)α(xs,i)
1−α, (23)

where ki is a lumped parameter of several constants including
a rate coefficient, electrolyte concentration, and maximum
ion concentration.

Battery voltage can now be expressed as follows:

V = VU,p − VU,n − V ′o − V ′η,p − V ′η,n, (24)

where

V̇ ′o = (Vo − V ′o)/τo, (25)

V̇ ′η,p = (Vη,p − V ′η,p)/τη,p, (26)

V̇ ′η,n = (Vη,n − V ′η,n)/τη,n, (27)

and the τ parameters are empirical time constants (used since
the voltages do not change instantaneously).

Recall that the batteries are arranged in two parallel branches
of 12 batteries in series. So the total voltage provided by the
battery system is

VB = V1 + V2 + . . .+ V12, (28)
= V13 + V14 + . . .+ V24. (29)

For given wheel speeds, we have the power PB demanded
from the set of batteries, so the battery system as a whole sees
iB = PB/VB . Throughout discharge, the battery voltages
remain balanced, so the current is split evenly between the
two parallel branches, with each seeing iB/2.

Dynamic Model Summary

To summarize, the model contains as states x, four charge
variables and three voltages per battery, along with td and
dd. Its inputs u include uL and uR. The voltages of all
batteries, along with the total battery current are measured,
so its outputs y include Vi for all batteries i, and iB . The
variables z consist of td and dd.

Uncertainty Characterization

For the rover, we assume all parameters are known and
process noise is negligible relative to future input uncertainty,
so we need to define surrogate variables for the future input
trajectories only. For prediction, the inputs to the system are
the commanded wheel speeds uL and uR. However, since the
demanded power is split evenly among the batteries, we can
simplify the prediction and include the power for a battery
Pb, as an input, and predict E for only one battery.

These inputs, uL, uR, and Pb, depend on how the rover
is to be driven in the future. We consider two different
driving scenarios, unstructured and structured driving. The
associated future input uncertainty is different in these cases.

Unstructured Driving—In unstructured driving, the rover is
driven around by the operator freely without any known
goals. Therefore the power demanded on the batteries varies
significantly. Thus, we have the least information about the
usage of the rover, and the most future input uncertainty. The
commanded wheel speeds, and hence required power, are all
random. By making some simplifying assumptions, we can
reduce the complexity of the problem. First, we assume that
the rover travels only in a straight line, i.e., uL = uR, thus,
removing one random variable. We can then use the known
relationship between commanded speed and power so that
only power remains as the random variable. So, we need only
describe Pb(k) for k ≥ kP (from which we can compute
corresponding values for uL and uR). Second, instead of
the rover going at variable speeds, we assume that it moves
at a constant speed, which is chosen randomly. We thus
transform the distribution of variable-power trajectories into
a distribution of constant-power trajectories, requiring only a
single random variable to describe.

With these simplifications, we can express power as Pb(k) =
p for k ≥ kP , where we require only one surrogate variable
to capture the statistics of p. In order to characterize the
statistics of this variable, we can look at past unstructured
driving scenarios, and compute the average power in each.
Then, we can find the mean and variance of the average power
over the set of scenarios. We use these statistical parameters
to define the constant-power trajectory distribution.
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Figure 2. Sampled power trajectory for structured driving.

Structured Driving—In structured driving, the rover is driven
to known waypoints at a fixed average speed. In this case,
uncertainty is reduced because distances between waypoints
and rover speed are known. Thus, we have more information
about the usage of the rover, and this should reduce the future
input uncertainty. In this driving scenario, the set of ordered
waypoints the rover will travel to are known, and the rover
travels a fixed overall speed. As such, power is the only
uncertain input (even with known speeds, power becomes
random due to variations in terrain). As with unstructured
driving, we approximate the trajectory going between any
two consecutive waypoints using a constant-power trajectory.
So, between each pair of consecutive waypoints, we sample
the power. In order to determine how long the rover will
be operating at this power, we need to know the distance
between the waypoints. Due to small variations in the paths
taken between waypoints, a straight line is not followed,
and so the distance is also random. As a random variable
we consider the bias above the straight-line distance that
the rover actually travels going between two consecutive
waypoints, expressed as a percent increase. After the final
waypoint is achieved, we assume the rover goes straight at
constant speed.

So, for n remaining waypoints, we require 2n + 1 surrogate
variables. Fig. 2 shows a sample power trajectory for struc-
tured driving. The power has a step change at each waypoint.
The amount of power drawn for each segment is selected
randomly, as is the distance traveled between the waypoints.
Each step change indicates that a waypoint has been met and
a new segment begun.

In order to compute the statistics of these random variables,
we look at past structured driving scenarios. We compute the
average power between consective waypoints, and the bias to
the straight-line distance traveled. Considering all waypoint
segments, we can compute the mean and variance for average
power and the distance bias. The surrogate variables will be
sampled from these distributions.

4. ESTIMATION
The first step of prognostics is estimation; to predict the future
behavior of a system we first require an estimate of its state at
the time of prediction. Since our system model is nonlinear,
we use the unscented Kalman filter (UKF) [28, 29]. The
UKF is based on the unscented transform (UT), which takes
a random variable x ∈ Rnx , with mean x̄ and covariance
Pxx, which is related to a second random variable y by some
nonlinear function y = g(x), and computes the mean ȳ

and covariance Pyy using a set of deterministically selected
weighted samples, called sigma points [28]. X i denotes the
ith sigma point from x and wi denotes its weight. The sigma
points are always chosen such that the mean and covariance
match those of the original distribution, x̄ and Pxx. Each
sigma point is passed through g to obtain new sigma points
Y , i.e.,

Yi = g(X i) (30)

with mean and covariance

ȳ =
∑
i

wiYi, (31)

Pyy =
∑
i

wi(Yi − ȳ)(Yi − ȳ)T . (32)

The symmetric unscented transform selects 2nx + 1 sigma
points symmetrically about the mean [29]:

wi =


κ

(nx + κ)
, i = 0

1

2(nx + κ)
, i = 1, . . . , 2nx

, (33)

X i =


x̄, i = 0

x̄+
(√

(nx+κ)Pxx

)i
,i = 1, . . . , nx

x̄−
(√

(nx+κ)Pxx

)i
,i = nx+1, . . . , 2nx

, (34)

where
(√

(nx + κ)Pxx

)i
refers to the ith column of the

matrix square root of (nx+κ)Pxx. Here, κ is a free parameter
that can be used to tune the higher order moments of the
distribution. A value of κ = 3 − nx is recommended if x
is assumed to be Gaussian [28].

As with other filters, the UKF operates in two steps, pre-
diction and correction [30]. In the prediction step, sigma
points for the states are generated based on the current es-
timated mean and covariance. The sigma points are passed
through the state equation from which new estimates of
mean and covariance can be derived from the transformed
sigma points. Output sigma points are then computed by
passing the transformed state sigma points through the output
function. In the update step, the Kalman gain is computed
based on the predicted outputs and the measured outputs. The
state estimates are then modified based on the Kalman gain.
Mathematical details of the filter can be found in [18,28, 29].

5. PREDICTION
Prediction is initiated at a given time kP using the current
joint state-parameter estimate, p(x(kP ),θ(kP )|y(k0:kP )).
The goal is to compute p(kE(kP )|y(k0:kP )) using the state-
parameter estimates and assumptions about uncertainty re-
garding the future parameter, input, and process noise values.

As described in Section 3, we assume all parameters are
known, so θ(k) is empty. Further, we assume that, because
the model is so accurate, process noise is negligible. There-
fore, only uncertainty in the future inputs is considered. In
the following, we describe the approach for the general case
as originally developed in [22].
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Algorithm 1 (kE(kP ),∆kE(kP ), z(kE),∆z(kE)) ←
P(x(kP ),ΘkP ,UkP ,VkP )

1: k ← kP
2: x(k)← x(kP )
3: z(kP )← g(k,x(k),ΘkP (k),UkP (k))
4: while TE(x(k),ΘkP (k),UkP (k)) = 0 do
5: x(k + 1)← f(k,x(k),ΘkP (k),UkP (k),VkP (k))
6: k ← k + 1
7: x(k)← x(k + 1)
8: end while
9: kE(kP )← k
10: ∆kE(kP )← k − kP
11: z(kE)← g(k,x(k),ΘkP (k),UkP (k))
12: ∆z(kE)← z(kP )

For one realization of each of the uncertain quantities at
prediction time kP , i.e., the state x(kP ), the parameter tra-
jectory ΘkP , the input trajectory UkP , and the process noise
trajectory VkP , we compute the corresponding realization of
kE using the system model with the function P, shown as
Algorithm 1. The function P simulates the system until the
event threshold TE evaluates to 1.

To use P, we need realizations of the state-parameter distri-
bution, the parameter trajectory, the input trajectory, and the
process noise trajectory. The distribution for the state comes
from the UKF, and the distributions for the parameter, input,
and process noise trajectories are defined indirectly by the set
of surrogate variables, as described in Section 2. So, we are
interested in computing the distribution for kE and its derived
variables from the distributions for p(x(kP ),θ(kP )), p(λθ),
p(λu), and p(λv) (see Fig. 1).

To compute the realizations of the surrogate variables for the
future input trajectories, we use the unscented transform sam-
pling method [23], in which we sample from the surrogate
variable distributions using the unscented transform. The
advantages of this method are that (i) it is deterministic, since
the unscented transform does not sample stochastically; and
(ii) it is computionally efficient, as the number of samples
needed is linear in number of the surrogate variable dimen-
sions. In contrast, Monte Carlo sampling is stochastic, and
stochastic algorithms cause difficulties for certification [23],
and typically a very large number of samples are required
to accurately represent the statistics of the distribution. By
using the unscented transform method, we sample a small
number of sufficient samples, run them through P, and then
reconstruct the statistics of kE (i.e., mean and variance) from
the sigma points transformed via P.

6. RESULTS
We use a rover testbed developed at NASA Ames Research
Center [5]. With the rover, both unstructured and structured
driving experiments have been performed in the field. In this
section, we provide results for both driving scenarios using
real data from these experiments in order to demonstrate the
prediction methods.

Unstructured Driving

We consider first an unstructured driving scenario, in which it
so happens that the rover is simply driven in circles until EOD
is reached. From a set of unstructured driving scenarios, we
determined that power averaged to 127 W with a standard
deviation of about 8.9 W, thus defining the statistics of PB .
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Figure 3. Remaining driving time predictions for unstruc-
tured driving.

This power is split between the 24 cells, so the surrogate
variable p, introduced in Section 3, is defined with a normal
distribution with a mean of 127/24 = 5.3 W and a standard
deviation of 8.9/24 = 0.37 W.

The predictions for remaining driving time and remaining
driving distance are shown in Figs. 3 and 4. Predictions are
made every 20 s. Since the rover did not stop, remaining
time until discharge and remaining driving time predictions
are the same, and so the former are not shown. In each plot,
the medians are shown along with the 5–25% and 75–95%
percentiles indicated by the black lines.

When we assume that the future power draw is higher than it
will be, remaining driving time and distance will be underpre-
dicted, i.e., the predictions will be conservative. On the other
hand, when we assume that the future power draw is lower
than it will be, remaining driving time and distance will be
overpredicted, i.e., the predictions will be overly optimistic.
In this scenario, the assumed future power used, based on
previous scenarios, is lower than the actual average power,
so the median predictions for remaining driving time are
biased above the true values, however, the true values are
still captured within the uncertainty of the predictions. We
can see that the uncertainty is quite large, with the difference
between the 5th and 95th percentiles for the first prediction
being about 1000 s.

Structured Driving

We next consider a structured driving scenario. The desired
waypoints and the path traversed by the rover are shown
in Fig. 5. Note that the path taken by the rover between
waypoints is not direct; on average, the rover travels 11% far-
ther than the straight-line distance between two consecutive
waypoints. On average, the rover requires 140 W of power
to travel, with a standard deviation of 9.6 W. The variation
is due to differences in terrain and rover handling (including
turns, which require more power than going straight). These
statistics define those used by the surrogate variables for
the constant power draw between waypoints and the relative
distance bias.

The predictions for remaining driving time and remaining
driving distance are shown in Figs. 6 and 7. The spread is not-
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Figure 4. Remaining driving distance predictions for un-
structured driving.
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Figure 5. Rover path and waypoints.

icably smaller than for unstructured driving. As EOD is ap-
proached, which occurs around 4600 s, the prediction spread
reduces since E is closer and hence there is less time for the
uncertainty to spread out. On average, relative accuracy of
the predictions is 98%. Initially, remaining driving time and
distance are underpredicted because the power drawn in the
first 500 s is only about half the average, but predictions are
based on the expected average. Therefore the predictions are
based on a faster discharge rate and hence remaining driving
time and distance are underpredicted. Since the state is being
tracked, once the power approaches the expected average,
predictions are accurate.

For structured driving, the uncertainty is much less than with
unstructured driving. The difference between the 5th and
95th percentiles for the first prediction are about 500 s for
structured driving, half that as for unstructured. Although the
variance in power drawn for a single segment is larger than
that for unstructured driving, uncertainty overall is reduced
because it is less likely to be in the extreme for several
consecutive segments than for a single segment (which is
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Figure 6. Remaining driving time predictions for structured
driving.
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Figure 7. Remaining driving distance predictions for struc-
tured driving.

what is considered for unstructured driving).

7. CONCLUSIONS
In this paper, we developed an approach to predict remain-
ing driving time and distance for a rover, extending the
framework originally presented in [18]. We considered both
unstructured and structured driving scenarios, in which we
described how to characterize the uncertainty associated with
these scenarios and methods to predict remaining driving time
and distance given this information. Experimental results
from rover field tests demonstrated the utility of the approach.

In this work, we also assumed that all batteries were at
the same age, thus having the same capacity, which was a
reasonable assumption in this case, since all the batteries were
fairly new. In reality, batteries age and thus each battery
has a different discharge rate, and this has an effect on the
system-level EOD. In that case, the battery models must
include aging dynamics [31], and in future work, aging pa-
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rameters should be estimated online. Further, if each battery
behaves differently, then a distributed prognostics approach
is required [32]. Diagnostics must be integrated as well,
because faults will change the system state and the power
demands on the rover, thus modifying the predictions [24].
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