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Abstract
The objective of the International Diagnostic
Competition is to provide a platform for eval-
uating how different diagnostic algorithms per-
form and compare to one another when applied
to the same problem. This paper describes three
model-based diagnosis algorithms entered into
the Fourth International Diagnostic Competition.
We focus on the first diagnostic problem of the in-
dustrial track of the competition in which a diag-
nosis algorithm must detect, isolate, and identify
faults in an electrical power distribution testbed
in order to provide abort recommendations when
warranted. We present here a general fault iso-
lation framework that encompasses three algo-
rithms, each of which use different residual sets
for fault isolation; one based on the global system
model, one based on minimal submodels com-
puted using Possible Conflicts, and one based on
the combination of the former two residual sets.
We describe, compare, and contrast the three al-
gorithms in terms of practical implementation and
their diagnosis results.

1 Introduction
In this paper, we present a model-based, qualitative, event-
based fault diagnosis scheme entered into the Fourth Inter-
national Diagnostic Competition (DXC’13). The compe-
tition allows for a comparative study of different diagnos-
tic approaches, and includes multiple diagnostic problems.
Different diagnostic algorithms applied to the same diag-
nostic problem are compared to one another and ranked in
terms of metrics developed in [Poll et al., 2010; 2011]. In
this work, we focus on diagnostic problem I (DPI) of the
industrial track of the competition, which consists of fault
diagnosis and recovery for a subset of the Advanced Diag-
nosis and Prognosis Testbed (ADAPT) [Poll et al., 2007],
called ADAPT-Lite, which is an electrical power distribu-
tion system. Our diagnosis scheme has three instantiations,
the first two being QED (Qualitative Event-based Diagno-
sis) and QED-PC (QED with Possible Conflicts [Pulido and
Alonso-González, 2004]), both of which were previously
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submitted to the Third International Diagnostic Competition
(DXC’11) [Daigle et al., 2012], and have been improved
and updated for this new edition of the competition. In ad-
dition to these two algorithms, we present a new entry in
this year’s diagnostic competition, QED-PC++, which may
be considered as a combination of QED and QED-PC.

QED extends the TRANSCEND qualitative diagnosis
scheme described in [Mosterman and Biswas, 1999]. In
this scheme, fault isolation is obtained through analysis
of the transients produced by faults, manifesting as devia-
tions in observed behavior from predicted nominal behav-
ior. TRANSCEND was extended by including relative resid-
ual orderings, which provide a partial ordering of measure-
ment deviations for different faults, leading to an enhanced
event-based fault isolation scheme [Daigle et al., 2009;
2007]. TRANSCEND deals only with abrupt faults, so in
[Daigle et al., 2012] we incorporated methods for incipient
and intermittent fault isolation and identification.

Whereas QED uses a global model of the system for
residual generation, the second algorithm, QED-PC, uses
the Possible Conflicts (PCs) diagnosis approach (presented
in [Pulido and Alonso-González, 2004]), in which residuals
are generated from minimal single-output submodels. This
approach decomposes the global system model into mini-
mal submodels containing sufficient analytical redundancy
to generate fault hypotheses from observed measurement
deviations. In this work, we use the qualitative fault iso-
lation framework of QED to perform residual analysis, us-
ing the PC-based residuals. For fault identification, we use
minimal parameter estimators computed from PCs for each
faulty parameter as proposed in [Bregon et al., 2012].

The third algorithm, named QED-PC++, can be seen as
the combination of the previous two diagnosis schemes.
QED-PC++ uses the residual sets used by QED (computed
using the global system model) and QED-PC (computed
from the PCs) to form a diagnosis scheme which improves
upon QED and QED-PC individually. In the previous com-
petition, we found that QED excelled at isolating nonsensor
faults, but needed ad hoc fault isolation rules in order to iso-
late sensor faults without the aid of fault identification. In
contrast, for QED-PC, we found that it excelled at isolat-
ing sensor faults, but required ad hoc fault isolation rules
to isolate nonsensor faults. By using residuals from both
the global model and the PCs, we eliminate the weaknesses
of the individual residual sets and obtain improved diagnos-
ability for QED-PC++ over QED and QED-PC individually.

The paper is organized as follows. First, Section 2
overviews the general diagnosis approach. Section 3 dis-



Figure 1: Diagnosis architecture.

cusses diagnosability within our fault isolation framework.
Section 4 describes three diagnosers that are instantiated
from the general diagnosis approach. Section 5 presents di-
agnosis results, and Section 6 concludes the paper.

2 Diagnosis Approach
Our diagnosis approach uses the model of the system, and
performs the tasks of (i) fault detection, (ii) fault isolation,
and (iii) fault identification. The diagnosis architecture is
shown in Fig. 1, and reflects the implementation of the three
algorithms. Next, we briefly introduce each of the main
blocks within our architecture. Additional details on each
module may be found in [Daigle et al., 2012].

2.1 System Modeling
ADAPT-Lite consists of relays, circuit breakers, AC and DC
resistive loads, a fan, a battery, and a DC to AC inverter,
along with 11 sensors measuring current, voltage, relay po-
sition, fan speed, and battery temperature (see [Poll et al.,
2011]). Our diagnosis approach is model-based, requiring a
model of both nominal and faulty behavior for use through-
out the diagnosis process. The three algorithms implement
the nominal model in a different way. For QED, the nominal
model is a global model of the system,M, and its inputs are
those of the global system. For QED-PC, the nominal model
is composed of a set of 11 minimal submodels computed
from PCs, with each submodelMi estimating the value of
sensor i using a subset of the system measurements as input
variables. QED-PC++ uses both the global model and the 11
submodels, thus having 22 total outputs and 22 residuals.

2.2 Fault Detection
The three algorithms use the same approach for fault detec-
tion. Each residual is assigned a fault detector. For each
output y(t), we define the residual as r(t) = y(t) − ŷ(t),
where ŷ(t) is the model-predicted output signal. As previ-
ously described, for QED, ŷ(t) is computed using the global
model, for QED-PC, it is computed using the corresponding
PC, and for QED-PC++, it is computed using each. Fault
detection works by applying a Z-test to the residual values.
The Z-test detects statistically significant nonzero residual
signals, which indicate the presence of a fault.

The real sensor data contains some intermittent spikes
which are not to be classified as faults. In order to avoid
false alarms and incorrect fault isolation due to data spikes,
we implement a median filter, which takes the last three val-
ues of a given sensor and reports the median of these values
as the current sensor value. As a result, fault detection will
be delayed and its sensitivity decreased, however this is pre-
ferred over false alarms and misdiagnoses.

2.3 Fault Isolation
In our proposal, we use a qualitative diagnosis methodol-
ogy that isolates faults based on the transients they cause
in system behavior, manifesting as deviations in residual
values [Mosterman and Biswas, 1999]. The transients pro-
duced by faults are abstracted using qualitative + (increase),
- (decrease), and 0 (no change) values and N (zero to
nonzero), Z (nonzero to zero), and X (no discrete change)
values to form fault signatures. Fault signatures represent
these measurement deviations from nominal behavior as the
immediate (discontinuous) change in magnitude, the first
nonzero derivative change, and discrete zero/nonzero value
changes in the measurement from the estimate caused by
discrete faults. These symbols are computed from the resid-
uals using symbol generation, as described in [Daigle and
Roychoudhury, 2010]. In addition we use the relative order
of residual deviation, termed relative residual orderings, to
isolate faults [Daigle et al., 2007]. Fault isolation funda-
mentals for the algorithms will be detailed in Section 3.

In addition to qualitative fault isolation, some heuristic
fault isolation rules are introduced to improve fault isola-
tion times and overall diagnosability. For example, if a re-
lay fault occurs, we should observe a change in the resid-
ual for its corresponding sensor almost immediately. Most
rules are of the form where we give an emprical time limit
to an expected deviation for a fault, such that if the devia-
tion is not observed, we eliminate that fault from the candi-
date list. Specific rules are provided in [Daigle et al., 2012].
For QED-PC++, due to its improved diagnosability from the
combined residual set, most rules are eliminated. For exam-
ple, for QED we need a rule to rule out nonsensor faults if
after a significant amount of time only one residual has been
observed to deviate; QED-PC++ does not require that rule
because multiple PC-based residuals will deviate due to a
sensor fault.

2.4 Fault Identification
Fault identification takes the set of isolated faults, and com-
putes the fault parameters for each, producing a new fault set
Fid including this information. Identification is initiated im-
mediately after the initial set of fault candidates is produced
after fault detection. An identification routine is run for each
fault candidate, which updates at each time step. All of the
algorithms use minimal submodels for fault identification,
except for sensor faults in which QED and QED-PC++ use
the global model.

2.5 Recovery
At the end of the scenario, the decision whether to abort or
continue the mission must be made. The fault identification
module computes a candidate set Fid, with each f ∈ Fid



being defined by the component, its fault mode, and the as-
sociated fault parameters. The oracle is viewed as a function
O(f) which, for a given fault, computes a recommended set
of commands C. For DPI, either C = {abort} or C = ∅.

Each command set has an associated cost. The cost is
zero when the correct command is chosen. If the algorithm
recommends abort when the mission should be continued,
the associated cost is that of the mission (25). If the al-
gorithm recommends to continue when it should have been
aborted, the associated cost is that of the mission and the
vehicle (125). Therefore, we take the conservative approach
and recommend abort if O(f) = {abort} for at least one
f ∈ Fid. In the case that a fault was detected but all can-
didates were eliminated, then one may assume either a false
positive, or a true positive with incorrect fault isolation. We
assume the latter, and in this case, we again conservatively
recommend an abort.

3 Diagnosability
For a given model, through the qualitative fault isolation
framework we can generate a set of fault signatures and
relative residual orderings, which form, based on a set of
residuals, the diagnostic information of the qualitative ap-
proach. Using the general model decomposition framework
described in [Roychoudhury et al., 2013], we can generate,
given a global system model, a number of independent sub-
models for the purposes of residual generation. A submodel
is defined by its subset of the variables and constraints of
the global model. For defining residuals, the outputs of the
submodels are the important variables. Given a set of (mea-
sured) outputs, we can generate a minimal submodel. For a
set of m total outputs, we can define m single-output sub-
models,

(
m
2

)
double-output submodels, and so on, and one

submodel with all m outputs (i.e., the global model). For a
system with m measurements the number of possible sub-
models is 2m − 1, and the number of unique residuals over
all possible submodels is m× 2m−1.

In our qualitative fault isolation framework, deviations in
residuals resulting from faults are abstracted into qualitative
symbols that can be reasoned over. These symbolic abstrac-
tions are termed fault signatures [Mosterman and Biswas,
1999; Daigle et al., 2009]. In order to define diagnosability,
we must first formalize the fault isolation framework. The
framework was originally presented in [Daigle et al., 2009],
and we extend and generalize it here to account for residuals
from a set of submodels.
Definition 1 (Fault Signature). A fault signature for a fault
f and residual r, denoted by σf,r, is set of symbols repre-
senting potential qualitative changes in r caused by f at the
point of the occurrence of f . The set of fault signatures for
f and r is denoted as Σf,r.

The temporal order of the residual deviations can also be
used as discriminatory information. The temporal order of
residual deviations for a given model, termed relative resid-
ual orderings, are based on the intuition that fault effects
will manifest in some parts of the system before others, and
can be computed based on analysis of the transfer functions
from faults to residuals [Daigle et al., 2007].
Definition 2 (Relative Residual Ordering). If fault f always
manifests in residual ri before residual rj , then we define a
relative measurement ordering between ri and rj for fault
f , denoted by ri ≺f rj . We denote the set of all residual
orderings for f as Ωf,R.

Signatures and orderings can be generated by manual
analysis of the system model, by simulation, or automat-
ically from certain types of models, e.g., as presented
in [Daigle, 2008]. Together, they establish an event-based
form of diagnostic information. For a given fault, the combi-
nation of all fault signatures and residual orderings yields all
the possible ways a fault can manifest in the residuals. Each
of these possibilities is a fault trace [Daigle et al., 2009].
Definition 3 (Fault Trace). A fault trace for a fault f over
residuals R, denoted by λf,R, is a sequence of fault signa-
tures, of length ≤ |R| that includes, for every r ∈ R that
will deviate due to f , a fault signature σf,r, such that the
sequence of fault signatures satisfies Ωf,R.

We group the set of all fault traces into a fault language:
Definition 4 (Fault Language). The fault language of a fault
f ∈ F with residual set R, denoted by Lf,R, is the set of all
fault traces for f over the residuals in R.

In our diagnosis framework, distinguishability between
faults is characterized using fault traces and languages.
Definition 5 (Distinguishability). Given a residual set, R,
a fault fi is distinguishable from a fault fj , if there does
not exist a pair of fault traces λfi,R ∈ Lfi,R and
λfj ,R ∈ Lfj ,R, such that λfi v λfj .

One fault will be distinguishable from another fault if it
cannot produce a fault trace that is a prefix1 (denoted by v)
of a trace that can be produced by the other fault. If this is
not the case, then when that trace manifests, the first fault
cannot be distinguished from the second.

Distinguishability is used to define the diagnosability of
a diagnosis model under a given fault isolation framework.
A diagnosis model is an abstraction of a system model with
only diagnosis-relevant information.
Definition 6 (Diagnosis Model). A diagnosis model S
is a tuple (F,R,LF,R), where F = {f1, f2, . . . , fn} is
a set of faults, R is a set of residuals, and LF,R =
{Lf1,R, Lf2,R, . . . , Lfn,R} is the set of fault languages.

If a diagnosis model is diagnosable, then we can make
guarantees about the unique isolation of every fault in the
diagnosis model.
Definition 7 (Diagnosability). A diagnosis model S =
(F,R,LF,R) is diagnosable if and only if (∀fi, fj ∈
F )fi 6= fj =⇒ fi�Rfj .

If S is diagnosable, then every pair of faults is distin-
guishable using the residual set R. Hence, we can uniquely
isolate all faults of interest. If S is not diagnosable, then
ambiguities will remain after fault isolation, i.e., after all
possible fault effects on the residuals have been observed.

4 Diagnosers
A qualitative fault diagnoser, in our framework, is then de-
fined by the set of faults and a set of residuals. From the
large residual space, any subset of residuals can, in theory,
be selected. In practice, there is much redundant informa-
tion over the residuals, and, therefore, only a subset are re-
quired to achieve an appropriate level of diagnosability. The
three diagnostic algorithms we develop are based on three
different qualitative fault diagnosers with different diagnos-
ability properties.

1A fault trace λi is a prefix of fault trace λj if there is some
(possibly empty) sequence of events λk that can extend λi such
that λiλk = λj .



Table 1: Selected Fault Signatures for the QED algorithm
for ADAPT-Lite

Fault E240 E242 IT281 IT267 ST516
AC483 ∆p > 0 +0X +0X +0X -0X 00X

DC485 ∆p > 0 +0X +0X -0X 00X 00X

E240 ∆p > 0 +0X 00X 00X 00X 00X

E240 m > 0 0+X 00X 00X 00X 00X

E240 µ∆p > 0 +0X 00X 00X 00X 00X

EY244 stuck open +0X -0Z -0Z -0Z 0-X

FAN416 underspeed +0X +0X 00X -0X -0X

4.1 QED
The first algorithm, QED, uses the set of residuals defined
from the global model [Daigle and Roychoudhury, 2010],
and is based on the extended Transcend approach [Daigle et
al., 2009]. Fault signatures for selected faults are shown in
Table 1.

A diagnosability analysis reveals several instances where
one fault cannot be distinguished from another. The first
set of indistinguishable faults is for the four pairs of faults
that produce exactly the same quantitative behavior on the
given measurements: failures in CB262 and INV2, failures
in EY281 and DC485, failures in EY272 and AC483, and
failures in EY275 and FAN416. Therefore, based on only
qualitative information they cannot be distinguished either.
The second set of indistinguishable faults is between offset
and intermittent faults, which produce the same initial tran-
sients. It is only through fault identification that they can
be distinguished. The third set of inidistinguishable faults
deals with sensors. For example, consider an offset in E240
(see Table 1). An abrupt increase will be observed in E240,
and at this point, an offset in AC83, DC483, EY244 stuck,
and FAN416 underspeed are all consistent. We have to wait
infinitely long to verify that no other residuals will deviate
in order to eliminate these faults.

So, when sensor faults occur, qualitative fault isolation
alone cannot uniquely distinguish them, and fault identifi-
cation is needed to resolve the ambiguities. Here, we take
advantage of knowledge that if a nonsensor fault occurs, it
should cause deviations in multiple residuals within finite
time. Therefore, we create a heuristic fault isolation rule
that implements this idea, e.g., if after 60 seconds only one
residual has deviated, we eliminate all nonsensor faults. In
this way, we can uniquely isolate sensor faults without fault
identification, and improve fault isolation time.

4.2 QED-PC
The second algorithm, QED-PC, uses the set of residuals
defined from the minimal single-output submodels [Daigle
et al., 2012], and is based on the Possible Conflicts ap-
proach [Pulido and Alonso-González, 2004], augmented
with the qualitative fault isolation framework [Bregon,
2010]. Signatures for selected faults are shown in Table 2.

The main advantage of the PC-based residuals is that, like
ARRs and MSOs, they decouple faults from residuals, so
faults affect only a subset of the residuals [Armengol et al.,
2009]. In most cases, the decoupling increases diagnosabil-
ity. For example, if each fault affects only a single unique
residual, the system is diagnosable even in the multiple fault
case. For QED-PC, sensor faults can now be easily distin-
guished, because they affect mutliple residuals. The reason

Table 2: Selected Fault Signatures for the QED-PC algo-
rithm for ADAPT-Lite

Fault E240 E242 IT281 IT267 ST516
AC483 ∆p > 0 00X 00X 00X -0X 00X

DC485 ∆p > 0 00X 00X -0X 00X 00X

E240 ∆p > 0 +0X -0X 00X 00X 00X

E240 m > 0 0+X 0-X 00X 00X 00X

E240 µ∆p > 0 +0X -*X 00X 00X 00X

EY244 stuck open 00X -0Z 00X 00X 00X

FAN416 underspeed 00X 00X 00X -0X -0X

is that sensed values are used as inputs, so a sensor fault will
cause a deviation in the residual for the PC that computes the
output as well as any PCs that use the sensor’s values as an
input. However, now there is a diagnosability problem with
nonsensor faults. For example, a fault in AC483 affects only
a single residual. So, like sensor faults with QED, we have
to wait infinitely long to ensure it is not some other fault that
produces a deviation in that residual.

Similarly to QED, we can improve diagnosability by in-
troducing some heuristic fault isolation rules for these faults.
In this case, we can assume that sensor faults would produce
deviations on more than one residual in finite time. This
will allow faults like those in AC483 and DC485 to be dis-
tinguished without resorting to fault identification, and im-
prove fault isolation times.

4.3 QED-PC++
The diagnosability analyses of QED and QED-PC reveal
the weaknesses of the individual residual sets. When sen-
sor faults occur, QED cannot distinguish them from nonsen-
sor faults. When some nonsensor faults occur, on the other
hand, QED-PC cannot distinguish them from sensor faults.
This suggests that an algorithm using the combined residual
sets of QED and QED-PC can resolve these ambiguities and
lead to improved fault isolation. This is the residual set used
by the third algorithm, QED-PC++.

We can see now that the diagnosability weaknesses of
QED and QED-PC are resolved by a combined residual set.
When a sensor fault occurs, only one global model resid-
ual will deviate, but multiple PC-based residuals will devi-
ate. For the indistinguishable nonsensor faults in QED-PC,
only one PC-based residual will deviate but multiple global
model residuals will deviate. This eliminates the need for
most of the heuristic fault isolation rules and improves fault
isolation times.

5 Results
In order to demonstrate the differences between the diag-
nosers, we describe a demonstration scenario in which a
drift fault in E242 is injected at 175 s with a slope of
0.075. Measured and predicted values for relevant outputs
are shown in Figs. 2–5. QED detects the fault at 176.7 s,
with an increase in the E242 residual. The possible faults are
in AC483, CB262, DC485, E242, EY260, EY272, EY275,
EY284, FAN416 (failed off or underspeed), and INV2. At
176.9 s the stuck mode of E242 is eliminated since consec-
utive measurements were of different values. At 177.1 s the
discrete change symbol is computed as X, which does not
change the candidate list. At 179.2 s, the slope of E242
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Figure 2: Measured and predicted values of E242 (global
model) for E242 drift fault.
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Figure 3: Measured and predicted values of E242 (PC) for
E242 drift fault.

is computed as +, eliminating all candiates but AC483 resis-
tance drift, DC485 resistance drift, and E242 drift. At 220 s,
since only one residual had deviated, it is concluded to be a
sensor fault and E242 drift is isolated. The injection time
is computed as 169.8 s and the magnitude as 0.069. The
recommended action is ∅, which is correct.

QED-PC detects the fault at 178.1 on the PC for E242.
The thresholds for the PCs are larger, so fault detection is
slower than with QED. The initial candidate list consists
only of faults in E240 and E242, since the remaining faults
are decoupled from the E242 residual by the PC design.
This is in constrast to QED, where most components ex-
cept sensors were implicated with the first residual devia-
tion. At 178.3, it is determined that neither E240 or E242
are stuck. At 182.1 the discrete change symbol for E242 is
computed as X, which does not change the candidate list.
At 182.1, a decrease in the E281 PC residual and increase
in the IT240 PC residual are detected, isolating the fault to
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Figure 4: Measured and predicted values of E281 (PC) for
E242 drift fault.
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Figure 5: Measured and predicted values of IT240 (PC) for
E242 drift fault.

E242 (drift or offset). At 183.1, the slope on E242 is com-
puted as +, therefore isolating E242 drift as the fault. The
injection time is computed as 169.7, and the slope as 0.069.
The recommended action is ∅.

QED-PC++ detects the fault at 176.7 with the E242
global model residual. The initial candidate list is the same
as with QED - faults are in AC483, CB262, DC485, E242,
EY260, EY272, EY275, EY284, FAN416 (failed off or un-
derspeed), and INV2. At 176.9 it is determined that E242 is
not stuck. At 177.1 the discrete change symbol for E242 is
computed as X, and the candidate list remains unchanged.
At 178.1, an increase in the residual for the E242 PC is
detected, thus eliminating all candidates except for faults
in E242. Thus, fault isolation is completed far earlier than
QED (about 30 s), and also earlier than QED-PC (about 5
s). The fault is computed as a drift with an injection time of
169.8 and a slope of 0.069. The recommended action is ∅.

Overall results are shown in Table 3. The metrics con-
sist of the mean time to detect faults Mfd, the mean false
negative rateMfn, the mean false positive rateMfp, the de-
tection accuracy Mda, the mean time to isolate faults Mfi,
the number of classification errors Merr, the mean CPU
time Mcpu, the mean peak memory usage Mmem

2, and the
overall recovery cost Mrc. Both QED and QED-PC are
improved from their performance in DXC’11 (see [Poll et
al., 2011]). One source of previous errors was data spikes,
which caused false alarms when occurring before the fault
and incorrect symbol generation when occurring after the
fault. The solution was to use a median filter over 3 sam-
ples. As a result, residual thresholds had to be increased
slightly for some sensors. Other changes in included minor
fixes to the fault signatures, and further tuning to residual
thresholds to decrease sensitivity and avoid false alarms and
incorrect symbol generation.

Overall, all algorithms do very well. QED and QED-
PC++ have errors on the same scenarios. There are 12 er-
rors due to the cases for the nondistinguishable faults (e.g.,
DC485 failing vs its relay failing). The remaining errors
are due to incorrect fault mode identification (e.g., identify-
ing as intermittent instead of drift) and missed detections.
The missed detections are acceptable, because the faults are
small enough that the correct action is ∅. The incorrect
mode identification scenarios also did not result in a bad
recommendation. The one scenario that did was one where
the identified fault parameters were off just enough so that

2Over multiple runs, CPU time and memory usage will vary
and within the statistical deviation, Mcpu and Mmem can be con-
sidered equivalent for all three algorithms.



Table 3: QED Diagnosis Results
DA Mfd (s) Mfn Mfp Mda Mfi (s) Merr Mcpu (ms) Mmem (kb) Mrc

QED 9.38 0.0152 0.0 0.987 125.61 19 22.72 7675 25

QED-PC 14.66 0.025 0.0 0.978 127.70 37 23.70 7743 275

QED-PC++ 9.32 0.0152 0.0 0.987 124.94 19 24.49 7835 25

an abort was recommended when the correct action was ∅.
QED-PC had similar errors, and also some additional

ones in which the DC485 and IT281 faults were confused.
This is a difficult situation to correct, because the thresholds
were difficult to tune. DC485 can only be uniquely isolated
if only IT281 deviates, so if we see additional deviations we
conclude it is an IT281 fault. However, sometimes IT281
did not cause large enough deviations in other residuals so
it was misdiagnosed as DC485. These scenarios did not re-
sult in a bad recommendation, though. In two cases, QED-
PC recommended ∅ when the correct action was to abort.
In one case, an ST516 fault was misdiagnosed as an E265
fault. This error is due to threshold sensitivities (for more
discussion, see [Daigle et al., 2012]). In the other case, an
ST516 intermittent offset fault was misdiagnosed as an off-
set fault, for which the identified offset was not enough to
trigger an abort recommendation.

6 Conclusions
In this paper, we presented three diagnostic algorithms
based on a common qualitative fault isolation framework.
The algorithms differ in which residual generators are used
for fault detection and isolation. We showed that a combina-
tion of global model and PC-based residuals offers the best
diagnosability and fault isolation performance, as confirmed
with experimental results.

Although the diagnostic algorithms do fairly well, there
are several areas that can be improved. For one, it was
found that tuning thresholds for slope generation was very
difficult. It would most likely be easier to avoid using that
symbol, and rely only on fault identification to sort through
the possible component modes. That would make the al-
gorithms easier to use up front and eliminate the chances
of incorrect symbol generation. Mode identification was
also an issue, and it was difficult to tune the discrete-valued
tests that determined which fault mode was present. A more
general, probability-based approach would be more favor-
able, that, for instance, ranks the possible modes according
to how best they fit the data.
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