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Abstract—Prognostics is crucial to providing reliable condition-
based maintenance decisions. To obtain accurate predictions of
component life, a variety of sensors are often needed. However, it
is typically difficult to add enough sensors for reliable prognosis,
due to system constraints such as cost and weight. Model-based
prognostics helps to offset this problem by exploiting domain
knowledge about the system, its components, and how they fail
by casting the underlying physical phenomena in a physics-
based model that is derived from first principles. We develop a
model-based prognostics methodology using particle filters, and
investigate the benefits of a model-based approach when sensor
sets are diminished. We apply our approach to a detailed physics-
based model of a pneumatic valve, and perform comprehensive
simulation experiments to demonstrate the robustness of model-
based approaches under limited sensing scenarios using prognos-
tics performance metrics.

I. INTRODUCTION

Prognostics is a key enabling technology for applying
condition-based maintenance. The goal of prognostics is to
make end of life (EOL) and remaining useful life (RUL)
predictions that enable timely maintenance decisions to be
made. As with diagnostics, prognostics methods may typically
be categorized as either data-driven or model-based. Data-
driven approaches do not take advantage of system and domain
knowledge, but instead use learning methods to identify trends
and determine EOL and RUL [1]. Such methods rely on
large amounts of run-to-failure data that are used to train
the algorithms. The training becomes dependent on the set
of sensors used, and, therefore, is not robust to loss of
sensors or a possible lack of sensors. Furthermore, the required
training data, in many cases, does not exist. In contrast, model-
based approaches exploit domain knowledge of the system, its
components, and how they fail in order to provide EOL and
RUL predictions [2]–[5]. The underlying physical phenomena
are captured in a physics-based model that is derived from
first principles, therefore, model-based approaches can provide
EOL and RUL estimates that are much more accurate and
precise than data-driven approaches, if the models are correct.
In addition, model-based approaches can be robust to sensor
loss and still work under limited sensing environments with
an accurate model.

In this paper, we demonstrate the effectiveness of model-
based approaches under limited sensing conditions. Reduction
of the number of sensors implies an increase in uncertainty.
Other sources of uncertainty are also present, such as model
inaccuracies, sensor noise, and uncertainty in future input
profiles. To help manage this uncertainty, we apply a particle

filtering approach that is based on joint state-parameter esti-
mation. Particle filters approximate the posterior probability
distribution as a set of discrete, weighted samples. Although
suboptimal, the advantage of particle filters is that they can
be applied to systems which may be nonlinear and have non-
Gaussian noise terms, where optimal solutions are unavailable
or intractable. Particle filtering approaches have previously
been successful in prognostics applications. In [4], the authors
apply a particle filtering approach to prediction of end of
discharge and EOL in lithium-ion batteries, which highlights
the performance that can be achieved by having accurate
models. In [6], the authors apply a particle filter-based prog-
nosis method to prediction of battery grid corrosion. Both [7]
and [8] apply particle filtering to estimation and prediction
of crack growth. Performance improvements over standard
particle filter methods can be achieved in prognostics with
advanced filtering techniques, such as the use of correction
loops [9], fixed-lag filters [5], Rao-Blackwellized particle
filters [10], [11], and risk-sensitive particle filters [12].

In this paper, we develop a model-based prognostics frame-
work that incorporates particle filters. As a case study, we
construct a detailed physics-based model of a pneumatic valve
that includes models of different damage mechanisms. We run
a comprehensive set of prognostics experiments in simulation
to demonstrate the robustness of the approach to limited sensor
sets, evaluated using established prognostic metrics [13], [14].

The paper is organized as follows. Section II formulates
the prognostics problem and overviews the computational
architecture we adopt. Section III develops the damage esti-
mation method using particle filters. Section IV describes the
prediction procedure. Section V presents the pneumatic valve
case study with experimental results in simulation. Section VI
concludes the paper.

II. PROGNOSTICS APPROACH

A. Problem Formulation

The problem of prognostics is to predict the EOL and/or
the RUL of a component. In this paper, we develop a general
model-based approach, where the system model is given by

ẋ(t) = f(t,x(t),θ(t),u(t),v(t))
y(t) = h(t,x(t),θ(t),u(t),n(t))

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is the
parameter vector, u(t) ∈ Rnu is the input vector, v(t) ∈ Rnv
is the process noise vector, f is the state equation, y(t) ∈ Rny



Fig. 1. Prognostics architecture.

is the output vector, n(t) ∈ Rnn is the measurement noise
vector, and h is the output equation.

Our goal is to predict EOL at a given time point tP using
the discrete sequence of observations up to time tP , denoted
as y0:tP . In order to determine when EOL has been reached,
we require a condition that is a function of the system state
and parameters, CEOL(x(t),θ(t)), which determines whether
EOL has been reached, where

CEOL(x(t),θ(t)) =
{

1, if EOL is reached
0, otherwise.

Using this function, we can define EOL with

EOL(tP ) , arg min
t≥tP

CEOL(x(t),θ(t)) = 1,

and RUL with

RUL(tP ) , EOL(tP )− tP .

Because of the noise inherent in the process, the measure-
ments, and future inputs, we must compute a probability
distribution of the EOL or RUL, i.e., the goal is to compute,
at time tP , p(EOL(tp)|y0:tP ) or p(RUL(tP )|y0:tP ).

B. Prognostics Architecture

We adopt a model-based approach, wherein we develop
detailed physics-based models of components and systems
that include descriptions of how fault parameters evolve in
time. These models depend on unknown and possibly time-
varying wear parameters, θ(t). Therefore, our solution to
the prognostics problem takes the perspective of joint state-
parameter estimation. In discrete time k, we estimate xk and
θk, and use these estimates to predict EOL and RUL at desired
time points.

We employ the prognostics architecture in Fig. 1. The sys-
tem is provided with inputs uk and provides measured outputs
yk. The fault detection, isolation, and identification (FDII)
module provides a fault set F, which is used by the damage
estimation module to determine estimates of the states and
unknown parameters, represented as a probability distribution
p(xk,θk|y0:k). This distribution is used by the prediction
module which computes EOL and RUL using hypothesized
future inputs. EOL and RUL are computed as probability
distributions p(EOLkP |y0:kP ) and p(RULkP |y0:kP ). In this
paper, we focus on the damage estimation and prediction
modules, and assume a solution to FDII.

III. DAMAGE ESTIMATION

To estimate the damage, we need to estimate p(xk,θk|y0:k).
In this paper, we use the particle filter for this purpose [15],
[16]. With particle filters, the state distribution is approxi-
mated by a set of discrete weighted samples, or particles,
{(xik,θ

i
k), wik}Ni=1, where N denotes the number of particles,

and for particle i, xik denotes the state estimates, θik denotes
the parameter estimates, and wik denotes the weight.

Particle filters are best suited to estimation in nonlinear
systems with possibly non-Gaussian noise, where optimal
solutions are unavailable or intractable. In this respect, they
may be viewed as a general (suboptimal) solution to the
state estimation problem. Performance can be improved by
increasing the number of particles, but this also results in
higher computational costs. The number of particles must be
chosen to suit the application requirements.

We employ the sampling importance resampling (SIR) par-
ticle filter, and implement the resampling step using systematic
resampling [17]. In particle filters, the posterior density is
approximated by

p(xk,θk|y0:k) ≈
N∑
i=1

wikδ(xik,θik)(dxkdθk),

where δ(xik,θik)(dxkdθk) denotes the Dirac delta function
located at (xik,θ

i
k).

Here, the parameters θk evolve by some unknown random
process that is independent of the state xk. To perform param-
eter estimation within a particle filter framework, however, we
need to assign some type of evolution to the parameters. The
typical solution is to use a random walk, i.e., for parameter
θ, θk = θk−1 + ξk−1, where ξk−1 is typically Gaussian
noise. With this type of evolution, during the sampling step
particles are generated with parameter values that will be
different from the initial guesses for the unknown parameters.
The particles with parameter values closest to the true values
should be assigned higher weight, thus allowing the particle
filter to converge to the true values. The selected variance of
the random walk noise must be large enough so as to allow
convergence in a reasonable amount of time, but small enough
such that when convergence is reached, the parameter can be
tracked smoothly. Since the parameter values are unknown
to start with, this can be a difficult task, but knowledge of
the correct order of magnitude of the parameter is helpful.
Additionally, correction loop methods can be used to tune this
value online as a function of performance [9].

The pseudocode for a single step of the SIR filter is shown
as Algorithm 1. Each particle is propagated forward to time
k by first sampling new parameter values and sampling new



Algorithm 1 SIR Filter
Inputs: {(xik−1,θ

i
k−1), wik−1}Ni=1,uk−1:k,yk

Outputs: {(xik,θik), wik}Ni=1

for i = 1 to N do
θik ∼ p(θk|θik−1)
xik ∼ p(xk|xik−1,θ

i
k−1,uk−1)

wik ← p(yk|xik,θik,uk)
end for

W ←
N∑
i=1

wik

for i = 1 to N do
wik ← wik/W

end for
{xik,θik, wik}Ni=1 ← Resample({xik,θik, wik}Ni=1)

states. The particle weight is assigned using yk. The weights
are then normalized, followed by the resampling step (see [15]
for pseudocode of the systematic resampling algorithm).

IV. PREDICTION

In the prediction phase, we wish to compute at time kP ,
p(EOLkP |y0:kP ) and p(RULkP |y0:kP ). The particle filter
computes

p(xkP ,θkP |y0:kP ) ≈
N∑
i=1

wikP δ(xikP ,θ
i
kP

)(dxkP dθkP ).

We can approximate a prediction distribution n steps forward
as [18]

p(xkP+n,θkP+n|y0:kP ) ≈
N∑
i=1

wikP δ(xikP+n,θ
i
kP+n)(dxkP+ndθkP+n).

So, for a particle i propagated n steps forward (without new
data), we can simply take its weight as wikP . Similarly, we can
approximate the EOL as

p(EOLkP |y0:kP ) ≈
N∑
i=1

wikP δEOLikP
(dEOLkP ).

To compute EOL, then, we propagate each particle forward
to its own EOL and use that particle’s weight at kP for the
weight of its EOL prediction.

The pseudocode for the prediction procedure is given as
Algorithm 2. Each particle i is propagated forward until
CEOL(xik,θ

i
k) evaluates to 1, at this point EOL has been

reached for this particle. Prediction requires hypothesizing
future inputs of the system, ûk. The inputs must be chosen
carefully because different inputs often have different effects
on damage progression. If future inputs are unknown, inputs
for each particle may be selected based on a distribution of
possible anticipated input values.

V. CASE STUDY

In order to illustrate our prognostics methodology, we take
a pneumatic valve as a case study. We develop a physics-
based model of the valve and its damage mechanisms. We

Algorithm 2 EOL Prediction
Inputs: {(xikP ,θ

i
k), wikP }

N
i=1

Outputs: {EOLikP , w
i
kP
}Ni=1

for i = 1 to N do
k ← kP
xik ← xikP
θik ← θikP
while CEOL(xik,θ

i
k) = 0 do

Predict ûk
θik+1 ∼ p(θk+1|θik)
xik+1 ∼ p(xk+1|xik,θik, ûk)
k ← k + 1
xik ← xik+1

θik ← θik+1

end while
EOLikP ← k

end for

Fig. 2. Pneumatic valve.

then present simulation experiments to demonstrate joint state-
parameter estimation and EOL/RUL prediction for different
sets of sensors and noise levels. The scenarios are compared
using prognostics performance metrics established in [13],
[14].

A. Component Modeling

Pneumatic valves are complex mechanical systems used in
many domains. These valves are actuated by gas, and can
use different types of actuators. A normally-closed valve with
a linear cylinder actuator is depicted in Fig. 2. The valve
is opened by filling the chamber below the piston with gas
up to the supply pressure, and evacuating the chamber above
the piston down to atmospheric pressure. The valve is closed
by filling the chamber above the piston, and evacuating the
chamber below the piston. The return spring ensures that when
pressure is lost, the valve will close due to the force exerted
by the return spring.

We develop a physics model of the valve based on mass
and energy balances. The system state includes the position
of the valve, x(t), the velocity of the valve, v(t), the mass of
the gas in the volume above the piston, mt(t), and the mass



of the gas in the volume below the piston, mb(t):

x(t) =


x(t)
v(t)
mt(t)
mb(t)

 .
The position when the valve is fully closed is defined as x = 0.
The stroke length of the valve is denoted by Ls; when the valve
is fully open its position is x = Ls.

The derivatives of the states are described by

ẋ(t) =


v(t)

1
m

∑
F (t)

ft(t)
fb(t)

 ,
where m is the combined mass of the piston and plug,

∑
F (t)

is the sum of forces acting on the valve, and ft(t) and fb(t)
are the mass flows going into the top and bottom pneumatic
ports, respectively.

The inputs are considered to be

u(t) =


pl(t)
pr(t)
ut(t)
ub(t)

 ,
where pl(t) and pr(t) are the fluid pressures on the left and
right side of the plug, respectively, and ut(t) and ub(t) are
the input pressures to the top and bottom pneumatic ports.
These pressures will alternate between the supply pressure
and atmospheric pressure depending on the commanded valve
position.

The sum of forces acting on the piston includes (1) the
forces from the pneumatic gas: (pb(t)−pt(t))Ap, where pb(t)
and pt(t) are the gas pressures on the bottom and the top
of the piston, respectively, and Ap is the surface area of
the piston, (2) the forces from the fluid flowing through the
valve: (pr(t) − pl(t))Av , where Av is the area of the valve
contacting the fluid, (3) the weight of the moving parts of the
valve: −mg, where g is the acceleration due to gravity, (4) the
spring force: −k(x(t) − xo), where k is the spring constant
and xo is the amount of spring compression when the valve
is closed, (5) friction: −rv(t), where r is the coefficient of
kinetic friction, and (6) the contact forces at the boundaries of
the valve motion:

kc(−x), x < 0

0, 0 ≤ x ≤ Ls
−kc(x− Ls), x > Ls,

where kc is the (large) spring constant associated with the
flexible seals.

The pressures pt(t) and pb(t) are calculated as:

pt(t) =
mt(t)RgT

Vt0 +Ap(Ls − x(t))

pb(t) =
mb(t)RgT
Vb0 +Apx(t)

where we assume an isothermal process in which the (ideal)
gas temperature is constant at T , Rg is the gas constant for the
pneumatic gas, and Vt0 and Vb0 are the minimum gas volumes
for the gas chambers above and below the piston, respectively.

The gas flows are given by:

ft(t) = fg(pt(t), ut(t))
fb(t) = fg(pb(t), ub(t))

where fg defines gas flow through an orifice for choked and
non-choked flow conditions [19]: fg(p1, p2) =

CsAsp1

√
γ

ZRgT

(
2

γ+1

) γ+1
γ−1

,

p1 ≥ p2 ∧ p1/p2 ≥
(
γ+1

2

)γ/(γ−1)

CsAsp1

√
γ

ZRgT

(
2

γ−1

)((
p2
p1

) 2
γ −

(
p2
p1

) γ+1
γ

)
,

p1 ≥ p2 ∧ p1/p2 <
(
γ+1

2

)γ/(γ−1)

CsAsp2

√
γ

ZRgT

(
2

γ+1

) γ+1
γ−1

,

p1 < p2 ∧ p2/p1 ≥
(
γ+1

2

)γ/(γ−1)

CsAsp2

√
γ

ZRgT

(
2

γ−1

)((
p1
p2

) 2
γ −

(
p1
p2

) γ+1
γ

)
,

p1 < p2 ∧ p2/p1 <
(
γ+1

2

)γ/(γ−1)

where γ is the ratio of specific heats, Z is the gas compress-
ibility factor, Cs is the flow coefficient, and As is the orifice
area. Choked flow occurs when the pressure ratio exceeds(
γ+1

2

)γ/(γ−1)
.

We select our complete measurement vector as

y(t) =


x(t)
pt(t)
pb(t)
fv(t)
open(t)
closed(t)

 ,

where fv is the fluid flow through the valve:

fv(t) =
x(t)
Ls

CvAv

√
2
ρ |pfl − pfr|sign(pfl − pfr),

Cv is the (dimensionless) flow coefficient of the valve, ρ is
the liquid density, and we assume a linear flow characteristic
for the valve. The open(t) and closed(t) measurements are
discrete sensors which output 1 if the valve is in the fully
opened or fully closed state:

open(t) =

{
1, if x(t) ≥ Ls
0, otherwise

closed(t) =

{
1, if x(t) ≤ 0
0, otherwise

It should be noted how the discrete position sensors (open
and closed) are treated within the particle filter framework.
In a particle filter, a certain amount of sensor noise must



be assumed for sensors, but, in practice, the discrete position
sensors have no noise. If an artificial amount of noise is not
assumed within the particle filter for these sensors, then sever
degeneracy will result, because very few, if any, particles will
be able to predict the transitions of these sensor values. The
degeneracy is severe enough that it cannot be remedied by
resampling methods. Assuming some amount of sensor noise
addresses this issue.

Fig. 3 shows a nominal valve cycle. The valve is com-
manded to open at 0 s. The top pneumatic port opens to
atmosphere and the bottom opens to the supply pressure
(approximately 5.3 MPa, or 750 psig). When the force on the
underside of the piston is large enough to overcome the return
spring, friction, and the gas force on the top of the piston, the
valve begins to move upward as the pneumatic gas continues
to flow into and out of the valve actuator. At about 8 s the
valve is completely open. The valve is commanded to close at
15 s. The bottom pneumatic port opens to atmosphere and the
bottom opens to the supply pressure. When the force balance
becomes negative, the valve starts to move downward, and
completely closes at around 20 s. The valve closes faster than
it opens due to the return spring.

B. Damage Modeling

Our general approach to damage modeling is as follows.
First, we identify parameters in the model that characterize
the extent of specific forms of damage, and these augment
the state vector x. We then incorporate models of how those
parameters change over time with system operation. It is the
parameters of these equations that are unknown and must
be estimated, and also augment x for that purpose. In the
valve model, we consider damage or wear characterized by the
increase in friction coefficient, the decrease in spring constant,
the appearance and growth of an internal valve leak between
the volumes on either side of the piston, and the appearance
and growth of external leaks at the pneumatic ports.

One damage mechanism present in valves is sliding wear.
The equation for sliding wear takes on the following form [20]:

V̇ (t) = w|F (t)v(t)|,

where V (t) is the wear volume, w is the wear coefficient
(which depends on material properties such as hardness), F (t)
is the sliding force, and v(t) is the sliding velocity. Friction
will increase linearly with sliding wear, because the contact
area between the sliding bodies becomes greater as surface
asperities wear down [20]. Lubrication between the sliding
bodies can also degrade over time. We therefore model the
change in friction coefficient in a form similar to sliding wear:

ṙ(t) = wr|Ff (t)v(t)|

where wr is the wear coefficient, and Ff (t) is the friction force
defined in the previous subsection. Fig. 4 shows the effect of
an increase in friction on the valve cycle. From the simulation,
we can determine the value of the friction parameter, r∗, at
which the valve has reached EOL. At this value, the friction
force becomes large enough that the valve cannot open within
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Fig. 3. Nominal valve operation.

the 15 s limit, as shown in Fig. 4. So, CEOL(x(t),θ(t)) = 1
if r(t) ≥ r∗.

We assume the same equation form for spring damage:

k̇(t) = −wk|Fs(t)v(t)|,

where wk is the spring wear coefficient and Fs(t) is the spring
force. The more the spring is used, the weaker it becomes.
We define k∗ as the largest value of k at which the valve
will not fully close upon loss of supply pressure. Fig. 4 shows
the effect of a decrease in the spring parameter on the valve
cycle. In normal operation, without the spring tending the
valve to close, the valve will open faster and close slower.
However, the spring must be strong enough to close the valve
against system pressure when the actuating pressure is lost.
So, CEOL(x(t),θ(t)) = 1 also if k(t) ≤ k∗.

An internal leak in the valve can appear at the seal surround-
ing the piston as a result of sliding wear. The pneumatic gas
is then able to flow between the volumes above and below
the piston, decreasing the response time of the valve. We
parameterize this leak by its equivalent orifice area, Ai(t),
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described by:

Ȧi(t) = wi|Ff (t)v(t)|,

where wi is the wear coefficient. The mass flow at the leak,
fi(t), is computed using the gas flow equation:

fi(t) = fg(pt(t), pb(t)).

As sliding wear occurs, the leak size keeps increasing. The
presence of an internal leak makes it more difficult to actuate
the valve, because it causes gas to flow into the lower pressure
volume that is being evacuated and out of the higher pressure
volume that is being filled. We define A∗i as the minimum
internal leak area at which the valve cannot open within the
15 s limit. So, CEOL(x(t),θ(t)) = 1 also if Ai(t) ≥ A∗i .
Fig. 4 shows the effect of an internal leak on the valve cycle.

External leaks can also form, most likely at the actuator
connections to the pneumatic gas supply, due to corrosion and
other environmental factors. Without knowledge of how the
leak size progresses, we assume the growth of the area of the
leak holes, Ae(t), is linear:

Ȧe(t) = we,

where we is the wear coefficient. We use additional t and b
subscripts to denote leaks at the top and bottom pneumatic
ports, respectively. The effect of the formation of a leak at the
top pneumatic port is that it becomes easier to open the valve
but more difficult to close it. Conversely, the effect of a leak at
the bottom pneumatic port is that it becomes more difficult to
open but easier to close the valve. Through simulation we can
determine the minimum size leak holes at which the valve
cannot open or close within the 15 s limit, A∗e,t and A∗e,b .
(An alternative is to use a maximum allowable leakage rate to
define EOL.) So, CEOL(x(t),θ(t)) = 1 also if Ae,t(t) ≥ A∗e,t
or Ae,b(t) ≥ A∗e,b. Fig. 4 shows the effect of external leak on
the valve cycle.

C. Experimental Results

We performed a number of simulation experiments to
validate our prognostics methodology and evaluate how it
performs under different sensor sets using the prognostics per-
formance metrics described in [13], [14]. In each experiment,
we considered additive zero-mean process and measurement
noise, used N = 500 particles, and used a sample time of
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Fig. 5. Estimation results for wk with M = {x, f, pt, pb} and M =
{open, closed}.

0.01 s. We assumed that only a single damage mechanism
was active, and, in each experiment, started from the point
where damage has been identified and the only unknown is
the wear coefficient (initially assumed to be 0 for parameter
estimation). The wear coefficients were chosen so that EOL
would be reached between 100 and 150 cycles.

The particle filters must be tuned to use the appropriate
amount of noise. Assuming the variance of the process was
known, the particle filters were set to sample with the same
amount of process noise. The random walk variances were
selected assuming the orders of magnitude of the wear coeffi-
cients were known. The particle filters were also set to assume
10 times the amount of actual measurement noise (assumed to
be known). For the discrete position sensors, a value of 0.1 for
the variance of these sensors was used, which resulted in the
best overall estimation performance for these scenarios. With
these settings fixed, we then varied only the measurement set,
denoted as M .

First, we provide an example scenario that demonstrates our
model-based methodology and explains the metrics used to
evaluate performance. We consider the case of spring damage,
where wk = 0.14, EOL∗ = 106.6 cycles (where EOL∗

and RUL∗ denote the true EOL and RUL), and examine
two cases in detail: one with M = {x, f, pt, pb}, and one
with M = {open, closed}. Fig. 5 shows the estimation of the
hidden parameter, wk for these two cases. As observed, the
estimates converge then track the true wear parameter value.



The two cases appear to have comparable estimation accuracy.
Clearly though, the M = {open, closed} case is slower to
converge, achieving convergence within 15 cycles, whereas
the M = {x, f, pt, pb} converges within 10. We evaluate
the performance of the wear parameter estimation using three
metrics, for quantifying accuracy, spread, and convergence.

Accuracy is calculated using the percentage root mean
square error (PRMSE), which expresses relative estimation
accuracy as a percentage:

PRMSE = 100

√√√√Meank

[(
ŵk − w∗k
w∗k

)2
]
,

where ŵk denotes the estimated wear parameter value at
time k, w∗k denotes the true wear parameter value at k, and
Meank denotes the mean over all values of k. In computing
PRMSE, we ignore the first 10 cycles (300 s), where most
of the error is associated with convergence. In this case, the
PRMSE is 5.11% for M = {x, f, pt, pb}, and 5.23% for
M = {open, closed}.

We calculate the spread using the relative median absolute
deviation (RMAD), which expresses the spread relative to the
median as a percentage:

RMAD(X) = 100
Mediani (|Xi −Medianj(Xj)|)

Medianj(Xj)
,

where X is a data set and Xi is an element of that set. For
estimation spread, for time k we use the distribution of wear
parameter values given by the particle set at k as the data set.
Note that since we use the SIR filter, all particles are equally
weighted and the median can be directly applied. We denote
the average RMAD over multiple k using RMADw:

RMADw = Meank(RMADw,k),

where RMADw,k denotes the RMAD of the wear param-
eter at time k. In this example, RMADw = 11.00% for
M = {x, f, pt, pb} and RMADw = 16.23% for M =
{open, closed}. Although estimation accuracy is comparable,
the spread is significantly better when using the full set of
continuous sensors.

The final estimation metric is convergence of the wear pa-
rameter estimate, denoted as Cw. We use the definition of the
convergence metric described in [13], where the convergence
of a curve is expressed as the distance from the origin to
the centroid under the curve (a shorter distance is better). We
use the absolute error of the hidden parameter estimate as
the curve. In this case, Cw = 27.99 for M = {x, f, pt, pb},
and Cw = 44.04 for M = {open, closed}. Since the wear
parameter is many orders of magnitude smaller than the time
scale, the convergence score is approximately in units of
seconds. We take convergence only over the first 100 s so that
errors after convergence do not contribute. Otherwise, a curve
with fast convergence but poor tracking could score higher
than a curve with slow convergence but excellent tracking.
The poor tracking in the former case is captured using the
PRMSE metric.

High estimation performance should translate to high pre-
diction performance if future inputs are known. In the case of
the pneumatic valve, the inputs that describe a complete valve
cycle are known, so there is no uncertainty in input prediction
for our purposes. Therefore, a low Cw score means that
accurate predictions are available sooner, i.e., a prognostics
horizon is arrived at earlier. A low PRMSE score means that
on average, estimates of the wear rate are closer to the true
value, so point predictions of EOL and RUL will on average
be closer to their true values. Accordingly, a low RMADw
score translates to more precise predictions.

We summarize prediction performance in the α-λ met-
ric [13], [14]. Here, α ∈ [0, 1] defines bounds as a function of
the true RUL, i.e., (1 ± α)RUL∗, and λ ∈ [0, 1] denotes the
fraction of the time from the first prediction to the true EOL.
We use the extended version of the metric, which incorporates
a third parameter, β ∈ [0, 1], which defines a bound on the
fraction of the probability mass of a prediction that falls
within the α-bounds [14]. The α-λ metric requires that for
given prediction times, a desired portion of the predicted RUL
distribution fits within a cone of accuracy defined by α. The
α-λ plot for M = {x, f, pt, pb} is shown in Fig. 6, where
α = 0.1 and β = 0.4 for all λ (all kP ). The distribution
at each prediction point is represented using a box plot. The
percentage of the probability mass that falls within the α-
bounds is shown above each box plot, along with the result of
the metric at that point (true or false). As shown in the figure,
the desired performance criteria are met at each prediction
point except for the 60-cycle prediction point. Note, however,
that at this point, the median prediction is within the α-bounds,
and the mean is only just outside. With α = 0.11, the metric
is satisfied at all prediction points. Fig. 7 shows the α-λ plot
for M = {open, closed}. Although the mean and median are
typically within the α-bounds, on average only about 32%
of the probability mass is contained within the bounds. With
α = 0.18, the metric is satisfied at all prediction points.

For a particular prediction point kP , we compute measures
of accuracy and prediction. For accuracy, we use the relative
accuracy (RA) metric:

RAkP = 1−
|RUL∗kP −Mediani(RULikP )|

RUL∗kP
,

Here, we have chosen the median as the measure of central
tendency of the distribution. The mean could also be used, but
we have found the median to be more accurate in our exper-
iments. We calculate prediction spread using RMAD, which
we denote as RMADRUL. As a second measure of spread,
we compute the fraction of the probability mass that falls
within specified α-bounds, denoted as πα. To summarize these
metrics over a particular experiment, we average them over
all prediction points. We use RA to denote the averaged RA,
RMADRUL to denote averaged RMAD, and π̄α to denote the
average fraction of the probability within the α-bounds. In the
current example, for M = {x, f, pt, pb}, RA = 0.953, π̄α =
0.487, RMADRUL = 10.23%, and for M = {open, closed},
RA = 0.934, π̄α = 0.326, RMADRUL = 16.16%. We also
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Fig. 6. α-λ metric for spring damage prediction, where α = 0.1, β = 0.4,
and M = {x, f, pt, pb}.
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Fig. 7. α-λ metric for spring damage prediction, where α = 0.1, β = 0.4,
and M = {open, closed}

consider worst-case performance over all prediction points.
We use the − superscript to denote a minimum and the +

superscript to denote a maximum. For M = {x, f, pt, pb},
RA− = 0.927, π−α = 0.384, and RMAD+

RUL = 14.81%.
For M = {open, closed}, RA− = 0.901, π−α = 0.326, and
RMAD+

RUL = 21.92%. In these cases, a clear connection
is observable between performance in estimation and perfor-
mance in prediction (e.g., for M = {x, f, pt, pb}, PRMSE =
5.11% where RA = 0.953, and RMADw = 11.00% where
RMADRUL = 10.23%. Both sensor sets have fairly good
accuracy, but using M = {x, f, pt, pb} achieves significantly
better precision.

We now present a comprehensive set of simulation results

for each sensor set for all considered faults. The results are
shown in Table I. We report PRMSE of the wear parameter
(in %), RMADw (in %), Cw (approximately in seconds),
RA, RA−, π̄α for α = 0.1, π−α , RMADRUL (in %), and
RMAD+

RUL (in %). The results presented are averaged over
10 experiments per scenario.

Overall, the expected results are obtained. The PRMSE
is under 10% for all cases, and is around 5% for most.
Correspondingly, RA is, in most cases, above 95%. The π̄α
score is typically desired to be at least 50%, but here it is lower.
For some faults, the prediction variance is large because the
random walk variances were not optimally tuned. In general,
this cannot be done beforehand since wear parameters are
unknown. In an online setting however, correction loops can
be used to reduce this variance over time [9].

In general, it is observed that not much difference exists in
relative accuracy over the different sensor sets. In fact, in some
cases, estimation of the wear parameter is better using only the
discrete position sensors rather than the full set of continuous
measurements. This means that accurate point predictions
can still be achieved even under limited sensing scenarios.
However, the prediction spread is significantly larger with
limited sensor sets. This is observed best using π̄α. For
example, for the bottom external leak, there is a 27% decrease
from the full set of continuous measurements to the sensor set
containing only the discrete position sensors. Convergence of
the wear parameter estimate is also affected, although there is
no significant difference for the top external leak, which we
attribute to the fact that a top external leak of the selected
wear rate is easily visible in the pressure measurements, so
convergence is quickly forced for all choices of M .

The results also demonstrate the usefulness of different sen-
sors. The flow measurement effectively provides a redundant
position measurement, so dropping either x or f from the
sensor set has little effect on performance. Some sensors also
give more useful information on specific faults, as observed in
the cases were M is a singleton. For changes in the friction
coefficient and spring rate, M = {x} outperforms {pt}, {pb},
and also {pt, pb}. This is because the position measurement
gives more direct information on changes in friction. Similarly,
for the cases with leaks, the pressure measurements are more
useful. For the internal leak and bottom external leak, pb is
most useful, and for the top external leak, pt is most useful.

As observed, even by just using the discrete position sen-
sors, accurate point predictions can still be made. In addition
to the uncertainty management capabilities of particle filters,
this robust performance is largely due to having a good model
of the component and its wear mechanisms, which is why
we favor model-based approaches. To investigate how the
performance changes when both measurements and the model
are less reliable, we ran a set of experiments with increased
process and measurement noise. The results are presented in
Table II for the bottom leak fault. We evaluate performance
using the key metrics PRMSE, RA, π̄α for α = 0.1, and
RMADRUL. Results were averaged over 15 runs for each
choice of M . The baseline noise level is denoted by ξ, which



TABLE I
AVERAGE PERFORMANCE FOR EACH FAULT UNDER DIFFERENT SENSOR SETS

Fault M PRMSE RMADw Cw RA RA− π̄α π−α RMADRUL RMAD+
RUL

Friction Coefficient {x, f, pt, pb} 6.19 15.01 25.12 0.955 0.887 0.343 0.283 14.41 19.98

(wr = 6.0, EOL∗ = 100.7) {x, pt, pb} 6.68 16.11 24.57 0.948 0.868 0.334 0.256 14.87 18.69

{f, pt, pb} 6.16 15.27 24.28 0.930 0.822 0.332 0.244 17.61 32.35

{pt, pb} 6.75 18.43 22.78 0.946 0.859 0.285 0.212 18.58 30.58

{x} 6.66 17.16 26.36 0.927 0.814 0.305 0.249 16.56 22.25

{pt} 7.04 20.56 27.44 0.948 0.855 0.266 0.210 21.23 38.73

{pb} 7.26 19.53 24.48 0.945 0.892 0.280 0.241 19.31 30.21

{open, closed} 5.56 24.00 30.98 0.939 0.886 0.223 0.198 24.58 35.08

Spring Rate {x, f, pt, pb} 5.58 10.87 32.70 0.949 0.875 0.454 0.336 11.04 15.63

(wr = 0.14, EOL∗ = 106.6) {x, pt, pb} 5.27 11.71 33.43 0.949 0.873 0.421 0.284 11.91 16.24

{f, pt, pb} 5.14 10.93 32.56 0.957 0.889 0.455 0.322 10.95 14.90

{pt, pb} 5.47 13.14 31.74 0.945 0.868 0.391 0.282 13.09 20.10

{x} 5.84 12.36 36.07 0.948 0.885 0.404 0.337 12.43 15.63

{pt} 5.86 14.51 40.00 0.936 0.857 0.346 0.234 15.09 22.35

{pb} 6.44 13.85 37.43 0.941 0.870 0.367 0.268 13.50 18.78

{open, closed} 5.10 16.58 43.50 0.946 0.860 0.321 0.255 16.40 22.37

Internal Leak {x, f, pt, pb} 6.00 10.33 25.88 0.953 0.836 0.455 0.316 10.82 15.73

(wr = 10−11, EOL∗ = 104.6) {x, pt, pb} 5.64 10.23 26.20 0.961 0.892 0.475 0.370 10.22 14.76

{f, pt, pb} 5.28 10.29 33.07 0.950 0.881 0.453 0.357 10.66 14.89

{pt, pb} 5.39 10.52 27.59 0.947 0.860 0.454 0.340 10.69 15.06

{x} 5.84 13.81 21.40 0.953 0.865 0.365 0.290 14.37 19.80

{pt} 6.24 13.39 28.96 0.937 0.856 0.362 0.288 14.14 20.42

{pb} 5.75 10.66 26.79 0.958 0.911 0.462 0.393 10.97 16.40

{open, closed} 4.51 17.42 33.49 0.959 0.908 0.305 0.270 17.06 20.50

Top External Leak {x, f, pt, pb} 5.33 9.27 21.54 0.957 0.796 0.505 0.233 9.32 16.94

(wr = 10−8, EOL∗ = 134.7) {x, pt, pb} 4.93 9.41 19.83 0.961 0.813 0.504 0.247 9.46 17.26

{f, pt, pb} 5.06 9.38 19.19 0.961 0.796 0.505 0.239 9.41 16.00

{pt, pb} 4.00 10.04 20.83 0.969 0.862 0.488 0.274 10.12 17.92

{x} 6.78 10.99 17.30 0.947 0.772 0.435 0.196 11.06 18.70

{pt} 4.01 10.08 17.94 0.968 0.868 0.486 0.282 10.16 16.33

{pb} 5.31 13.10 18.96 0.956 0.822 0.382 0.191 13.31 23.79

{open, closed} 5.14 14.11 18.82 0.959 0.806 0.360 0.217 14.24 27.40

Bottom External Leak {x, f, pt, pb} 5.68 11.75 25.39 0.954 0.825 0.415 0.257 11.74 17.84

(wr = 10−9, EOL∗ = 148.0) {x, pt, pb} 5.46 11.86 25.02 0.955 0.825 0.414 0.256 11.84 18.27

{f, pt, pb} 5.68 11.78 27.35 0.953 0.804 0.413 0.236 11.77 18.55

{pt, pb} 5.15 11.97 25.92 0.959 0.827 0.412 0.260 11.97 17.74

{x} 6.19 13.99 25.25 0.949 0.781 0.362 0.245 13.92 46.10

{pt} 5.87 16.22 29.84 0.951 0.808 0.317 0.212 16.17 57.15

{pb} 5.06 11.94 23.48 0.958 0.840 0.413 0.274 11.92 20.14

{open, closed} 5.29 17.35 34.11 0.954 0.818 0.303 0.235 17.23 58.96



TABLE II
AVERAGE PERFORMANCE FOR THE BOTTOM LEAK FAULT UNDER DIFFERENT NOISE LEVELS

M PRMSE RA π̄α RMADRUL
ξ 10ξ 100ξ ξ 10ξ 100ξ ξ 10ξ 100ξ ξ 10ξ 100ξ

{x, f, pt, pb} 5.68 8.60 12.87 0.954 0.931 0.899 0.415 0.355 0.275 11.74 13.86 18.14

{x, pt, pb} 5.46 7.77 11.27 0.955 0.935 0.907 0.413 0.358 0.274 11.84 13.75 18.36

{f, pt, pb} 5.68 7.94 11.98 0.953 0.935 0.902 0.413 0.357 0.279 11.77 13.90 18.02

{pt, pb} 5.15 7.20 10.97 0.959 0.939 0.909 0.411 0.359 0.271 11.97 13.96 18.60

{x} 6.19 8.39 12.49 0.949 0.932 0.896 0.362 0.302 0.233 13.92 17.45 22.66

{pt} 5.87 9.03 14.63 0.951 0.920 0.874 0.316 0.249 0.190 16.17 21.20 27.68

{pb} 5.06 7.79 10.29 0.958 0.935 0.915 0.412 0.349 0.278 11.92 14.26 18.72

{open, closed} 5.29 7.03 11.69 0.954 0.941 0.904 0.303 0.284 0.241 17.23 19.12 21.76

corresponds to about 0.1% process noise and 1% measurement
noise. We increased the noise variances by factors of 10
(denoted by 10ξ) and 100 (denoted by 100ξ). The 100ξ noise
level corresponds to 1% process noise and 10% measurement
noise.

As shown in the table, performance degrades as noise is
increased. However, even with 100ξ, the average RA has only
decreased to about 90% for all choices of M . Significant re-
ductions in prediction spread are also observed. The difference
in performance between the full sensor set and using only the
discrete position sensors, though, is reduced in the higher noise
scenarios. Performance is the best when the bottom pressure
sensor is used, as this provides the most direct information for
the bottom leak fault.

VI. CONCLUSIONS

In this paper, we developed a general model-based prognos-
tics methodology using particle filters, formulated as a joint
state-parameter estimation problem. State-parameter estimates
are propagated forward in time to obtain EOL and RUL
predictions, based on models that capture the progression
of damage over time, characterized by a set of unknown
parameters. We evaluated the performance under limited sen-
sor sets using prognostics performance metrics [13]. It was
shown that, with an accurate model, accurate predictions
can still be made even when only discrete position sensors
are utilized. The disadvantage is that prediction spread may
increase significantly. We also investigated how performance
degrades when model uncertainty (i.e., process noise) and
sensor noise are increased. Even with the maximum amount
of noise considered, an average of 90% accuracy was still
achievable, although under much wider prediction spread.

In future work, we will investigate how methods to decrease
prediction spread such as correction loops [9] and fixed-lag
filters [5] can improve performance under limited sensor sets.
In addition, we assumed only single damage mechanisms were
active in our experiments. While the approach presented can
still be applied to estimation of multiple wear parameters, a
decrease in performance is expected. Investigating that case
under limited sensor sets is also of interest.
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