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Abstract— Fault detection and isolation is a key compo-
nent of any safety-critical system. Although diagnosis meth-
ods based on discrete event systems have been recognized
as a promising framework, they cannot be easily applied
to systems with complex continuous dynamics. This paper
presents a novel approach for discrete event system diagnosis
of continuous systems based on a qualitative abstraction of
the measurement deviations from the nominal behavior. We
systematically derive a diagnosis model, provide diagnosabil-
ity analysis, and design a diagnoser. Our results show that
the proposed approach is easily applicable and can be used
for online diagnosis of abrupt faults in continuous systems.

I. INTRODUCTION

Fault detection and isolation (FDI) is a key component
of any safety-critical system. When faults and degra-
dations occur, it is important to quickly identify them
so corrective actions can be taken in a timely manner
and catastrophic situations can be avoided. There are
several frameworks to FDI that can be categorized along
several dimensions, including model-based vs. signal-
driven, online vs. offline, and continuous vs. discrete.
Discrete event system (DES) methods have been recog-
nized as a promising framework due to the significance of
event-driven models in safety-critical systems, the well-
developed theory that allows systematic construction of a
diagnostic system, and the computational efficiency that
enables online diagnosis for large systems.

Existing DES diagnosis methods [1]-[3] are usually
based on a detailed, automata-based model capturing both
the nominal and faulty system behavior. If such a model
exists, these approaches can be easily applied for diagno-
sis of abrupt faults represented by unobservable events.
Although discrete event systems can readily model many
practical applications [1], [4]-[6], they are not well-suited
to capture complex continuous dynamics. Abstracting
continuous dynamics requires quantization of the con-
tinuous state space that results in large, nondeterministic
models [7], [8]. Further, even if it is reasonable to abstract
the nominal continuous behavior, developing DES models
for faulty behavior is very challenging. Faults in contin-
uous dynamic systems are represented by changes in the
system parameters, and therefore, quantization techniques
must consider a high-dimensional state space and often
complex nonlinear dynamics.

This paper presents a novel approach for DES diagnosis
of continuous systems based on a qualitative abstraction

of the measurement deviations from the nominal behav-
ior. We describe a systematic method for generating a
discrete event model of the system representing the faulty
behaviors. The approach is based on the TRANSCEND [9]
methodology for model-based, qualitative fault diagnosis
in continuous systems. Starting with the system model,
we systematically derive a diagnosis model, extract diag-
nostic information, and build a diagnoser.

Specifically, the contribution of the paper is threefold:
(i) we systematically construct a labeled transition system
capturing the fault language, which, for each fault, de-
scribes all possible sequences of measurement deviations,
(ii) we analyze the diagnosability of the system and design
an event-based diagnoser, and (iii) we describe an im-
plementation that improves the computational efficiency
of the diagnoser. Diagnosis of component faults in an
electric circuit is used throughout the paper to illustrate
the approach.

Our approach to diagnosis of continuous systems ex-
ploits the qualitative form of the fault transient created
by abrupt deviations in component parameter values as
well as the temporal ordering of measurement deviations,
thereby generating event sequences [10], [11]. Diagnosis
in discrete event systems is concerned with diagnosing
system failures based on sequences of observed events.
Therefore, there is a direct link between our diagnosis
approach and DES approaches. Section II clarifies the
connection between traditional DES diagnosis methods
and our proposed work. Section III presents our modeling
and analysis approach, Section IV describes the design of
the diagnoser, and Section V concludes the paper.

II. RELATED WORK

We formulate our approach to diagnosis of continuous
systems into a DES framework. DES diagnosis methods
are based on observing system events and making infer-
ences about the system state. The basic idea is that the
occurrence of a fault will generate a unique sequence of
observable events that will establish the presence of the
fault. The seminal work of [1], [2] describes an event-
based DES diagnosis framework. A diagnoser based on
the system model functions as an extended observer that
provides estimates of the system state under nonfaulty
and faulty conditions. In [3], the authors use a state-
based approach, so the diagnoser determines the system



condition, rather than which failure events have occurred.

To apply DES diagnosis approaches to continuous sys-
tems, the system models must be abstracted in some way.
One method is to create a timed DES model. Such models
typically include an additional observable event represent-
ing the tick of a global clock [12], [13]. Diagnosis of
timed DES has been investigated in [12] as an extension
of [1] and in [13] as an extension of [3]. Alternatively, a
timed automaton model of the system can be used for di-
agnosis [14]. The approach of [7] develops the abstracted
timed DES model through quantization. The continuous
state space is partitioned and events defined for crossings
of those partitions. This approach is limited to discrete
inputs, discrete measurements, and discrete faults. Coarse
quantizations lose information which may be valuable
to diagnosis, but fine-grained quantizations suffer from
state explosion. To use the quantization approach, faults
have to be quantized according to their magnitude and
other characteristics. If faults are possible at any state
of the system (as is usually the case), then the number
of states grows even more. Furthermore, the resulting
model is, except in trivial cases, nondeterministic which
degrades the performance and increases the computational
requirements of diagnosis algorithms.

We instead propose a qualitative abstraction approach,
where we model only the faulty behavior relevant to
diagnosis. Three qualitative states are defined for each
measurement: above nominal, at nominal, and below
nominal. Measurement deviations directly indicate the
presence of a fault and form the event set of our approach.
The diagnoser therefore does not need to track the nomi-
nal behavior, as with quantization approaches, but only
track the fault behavior as given by the measurement
deviations. Nominal behavior is instead computed with
an observer based on the system model [9] The observer
uses a continuous model of the system, so does not further
abstract the model via quantization. The tasks of tracking
nominal behavior and fault isolation are separated so that
the diagnoser is concerned only with faulty behavior.

In existing DES diagnosis approaches [1]-[3], [7], [12],
[13], the discrete event model of the system and all its
faulty behavior are assumed to be given. We assume our
continuous model of the system is given, where faults are
represented as parameter changes in the nominal model
of the system. As a result, the system model represents
both nominal and faulty behavior in a very concise way.
From this model, we systematically derive the diagnosis
model [9] to generate fault signatures and measurement
orderings, and extract from this information a discrete
event model of the system with respect to faulty behavior.
This greatly reduces the burden of the modeling task, as
well as providing a systematic framework for deriving
the faulty behavior. Unlike quantization approaches, our
approach is not dependent on fault magnitude because
we are only concerned with the qualitative form of the
measurement deviations.

Because we are working under an event-based frame-
work, the notions of fault traces, fault languages, dis-
tinguishability, and diagnosability that we define bear

a resemblance to those defined in the DES literature,
including [15]. The notion of using temporal orders of
measurement deviations to help discriminate faults is also
investigated in [16], [17], however it is based on analytical
redundancy relations, which are difficult to develop for
nonlinear systems and multiplicative faults. The approach
also does not address how to obtain this information,
whereas in our approach, it is derived systematically from
the system model.

III. A DIAGNOSIS APPROACH BASED ON
QUALITATIVE ABSTRACTION

While certainly applicable, the utility of explicit dis-
crete event approaches to diagnosis of continuous systems
seems limited. To achieve diagnostic precision, the sys-
tem quantization may have to be very fine-grained. The
nondeterminism of the model and its large size lead to
large diagnosers with high computational requirements.
We instead abstract continuous system behaviors with
respect to their deviations from the nominal system be-
havior. These are represented as qualitative measurement
deviations in a way that captures the dynamics associated
with the deviations after fault occurrence, resulting in
compact fault models.

Our approach is based on the TRANSCEND [9] method-
ology. TRANSCEND is a model-based approach to diag-
nosis of continuous systems. Starting with a bond graph
model [18] of the system, a temporal causal graph (TCG)
is derived, which captures the propagation of fault effects
as deviations in the system variables. These effects are
captured qualitatively as fault signatures of the observed
measurements [9] and temporally as relative measurement
orderings [10].

Throughout the paper we will illustrate the diagnosis
method using a circuit example. Fig. 1(a) gives the
schematic, and the associated bond graph is shown in
Fig. 1(b). We assume that our input voltage, v(t), is
constant and positive. The derived TCG is given in
Fig. 2. In our framework, a fault is an abrupt change
in a parameter value of the system model, and mea-
surement deviations are transients due to the fault. We
also assume that only one fault occurs in the system
at a time. The set of faults is assumed to be F =
{R{, R, RS, Ry, Cf, Oy, L], LT}, where the super-
script indicates the direction of change of the parameter
value. We define the measurement set as the current
through L4, the voltage across C1, and the current through
Ry, or M = {fa,es5, f¢} in the bond graph model.

Faults signatures provide the discriminatory informa-
tion in TRANSCEND. A fault signature is the symbolic
manifestation of a measurement deviation, represented
as the qualitative effect of a fault on a measurement.
It represents the qualitative value of zeroth- through
kth-order derivative changes on a measurement due to
the occurrence of a fault. Because only magnitude and
slope can be reliably measured, we condense the sig-
natures to the magnitude change symbol and the first
nonzero derivative change, e.g., 000—+—+ becomes 0-,
and +-+-+-+ becomes +-. We can do this because
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Fig. 2. Temporal causal graph for the circuit.

higher-order changes will eventually manifest as first-
order changes. Furthermore, higher order effects after the
first change provide no additional discriminatory value
[19]. Therefore, a fault signature for measurement m will
be an element of the set ¥,,, = {m* =, m~F m%* m0~}.
The superscript indicates the observed deviation. The
first symbol represents the immediate direction of abrupt
change (a discontinuity) and the second symbol represents
the direction of change.

When two paths of the same derivative order in the
TCG exist from a fault to a measurement and give
opposite qualitative propagations, the derivative effect
cannot be determined, resulting in a signature of 0. Such
a signature can manifest as 0+ or 0—. So, in general, o ¢,
may not be unique.

Definition 1 (Fault Signature): A fault signature for a
fault f and measurement m is the qualitative effect of f
on m, given f has occurred, and is denoted by o, €
Yifm, where X, C 3. We denote the set of all fault
signatures for fault f as X.

Relative measurement orderings define, with respect to
a given fault, a partial order of measurement deviations.
These are also predicted using the TCG based on common
temporal subpaths [10].

Definition 2 (Relative Measurement Ordering):
Consider a fault f and measurements m; and m;. If f
manifests in m; before m; then we define a relative
measurement ordering between m; and m; for fault
f, denoted as m; <j; m;. We denote the set of all
measurement orderings for fault f as Q.

The fault signatures and relative measurement orderings
for the circuit system are given in Table I. For example,
consider L] . A decrease in L; will cause an immediate

TABLE I
FAULT SIGNATURES AND RELATIVE MEASUREMENT ORDERINGS
FOR THE CIRCUIT

Fault | fo es fe | Measurement Orderings
RT 0- 0- 0-| fa<es, fo<fe

Ry 0+ 0+ 0+ | fa<es,fo<Tfe

Ry | 0= 0+ —+ | e5=<f2f6<f2,f6<es
R, | 0+ 0- +- | e5=<fa,f6 <f2,f6<es
CY | o+ -+ —+|es=<fo,fo<f2

Cr | 0= += +-|es=<fa,fo<fo

Ly -+ 0- 0-| fa<es fo<fs

LT +— 0+ 0+ | fo<es, f2<f6

increase in fy, because of the inverse relation implied in
the TCG. Since all subsequent paths from f5 to any other
observed variable in the system contain some edge with
a dt specifier (implying an integration), then deviations
in these measurements will only be detected after f
deviates. Either e; or fz may deviate next. It cannot
be determined which will deviate first because the path
from e; to fg contains no integrations. The changes in
these measurements will not be abrupt because of the
integration in the path from L; to the measurement, and
the direction of change will be opposite that of fo because
the —1 specifier in the path from f5 to e5 and fg indicates
an inverse proportionality relationship.

We combine the notion of fault signatures and relative
measurement orderings into an event-based framework.
Essentially, for a specific fault, the combination of all fault
signatures and relative measurement orderings yields all
the possible ways a fault can manifest. We denote one of
these possibilities as a fault trace.

Definition 3 (Fault Trace): A fault trace for a fault f,
denoted by Ay, is a string of length < |M| that includes,
for every m € M that will deviate due to f, a fault
signature oy, such that the order of fault signatures
satisfies (2.

As an example, consider Cf’ . A valid fault trace is
Aok = € T, but, Aok = fStes T £ is not
because this sequence of events does not satisfy €2+.

. 1
We group the set of all fault traces into a fault language.

Definition 4 (Fault Language): The fault language of
a fault f, denoted by Ly, is the set of all fault traces for
f

This language can be represented concisely by a la-
beled transition system (LTS).

Definition 5 (Labeled Transition System): A labeled
transition system is a tuple £ = (Q, ¢o, X, —) such that:
@ is a set of states, ¢, € Q is an initial state, 3 is a set
of labels, and —C () x ¥ x @ is a transition relation.

To systematically construct the LTS representation of a
fault language, we can represent each fault signature and
each relative measurement ordering as a LTS, and then
compose all this information. Each fault signature oy,
can be represented as a LTS, shown as the first LTS in
Fig. 3. It consists of only the single event corresponding
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Fig. 3. Fault signature LTS representation (left) and relative measure-
ment ordering LTS representation (right).

to the fault signaturel. Also, each relative measurement
ordering, m; <y m;, with associated signatures oy ,,
and oy ., can be represented as a LTS, shown as the
second LTS in Fig. 3. It consists of the two associated
signatures in the determined ordering.

Lemma 1: The LTS representation of a fault language
L for fault f, denoted by L, is the synchronous product
of the individual LTS for all o¢,, € Xy and all m; <y
m; € Qy, where the alphabets for each LTS are taken to
be the events contained in the LTS.

Proof: Because the synchronous product must obey
all the individual ordering constraints and will include all
measurement deviation events for the fault, then it will
produce all possible measurement deviation sequences for
the fault, and only those. [ |

Lemma 2 (Distinguishability): A fault f; is distin-
guishable from a fault f;, denoted by f; = f;,if (V Ay, €
Lfi7)\fj € ij) (=3 A) ApA= >\fj'

Proof: Two faults are distinguishable if it is not
possible for them to manifest in the measurements in the
same way. Since a fault language represents all possible
measurement deviation sequences for a particular fault,
then if one fault exhibits a trace that is a substring of
another fault, then the faults cannot be distinguished.
Otherwise, they cannot manifest in the same way and are
distinguishable. ]

Depending on how they actually manifest in the system
however, two faults which are indistinguishable may
be discriminated if fault f; occurs and manifests in a
way that it is not possible for fault f; to manifest, i.e,
Af; ¢ L i Distinguishability is, therefore, a conservative
notion. To design diagnosers, we look for the notion of
diagnosability, based on the notion of distinguishability.

Lemma 3 (Diagnosability): A system 1is single fault
diagnosable if (Nf;, f; € F)fi # f; = fi~ f;.

Proof: A system is diagnosable if each possible fault
trace is consistent with a unique fault. If two faults are
distinguishable, then they cannot manifest in the same
way. Therefore, if all pairs of faults are distinguishable,
then a given fault trace cannot be consistent with the more
than one fault. Therefore the fault trace corresponds to a
unique fault, so the system is diagnosable. ]

IV. DIAGNOSER DESIGN
A. Diagnosis Algorithm

The notion of diagnosability is used in building correct
diagnosers. To guarantee unique diagnosis of every fault, a
system must be diagnosable. We now describe a method
to systematically create such a diagnoser, but first, we
define formally a diagnosis and a diagnoser.

It Om, s is not unique, multiple edges for each possibility are needed
going from the first state of the LTS to the final state.

Algorithm 1 D « CreateDiagnoser(Dy,Ds)
Q—3,0—3, D—2,Y¥—X1UXs
Go (QO17QO2)’ Y(QO) — D, Qpend — {QO}
while Qpena # @ do

(q1,92) < pop(Qpend)
for all o, € 3 do
if m ¢ H((q1,q2)) then
if 51(q1,0m) and 52(Q2,0’m) then
q/ — (51(611,0m),52((]2,07”))
h — Y (61(q1,0m)) UY (d2(q2, 0m))
else if 51(q1, 0., ) then
q/ ~ (61(q170m)7q2)
h — Y (d1(q1,0m))
else if 92(q2, 0rm ) then
q — (q1,02(q2,0m))
h — Y (62(g2, 0m))
else
¢ — o
h+—o
if ¢ # & then
if Y((ql,QQ)) = & then
d«<—h
else
d—Y((q1,92)) Nh
if d # @ then
Q—QuU{d}
H(q") < H((q1,92)) U{m}
0((q1,92),0m) — ¢
D— DU {d}
Y(q)—d
if ¢ ¢ Qpena then
pUSh(Qpemh q/)

Definition 6 (Diagnosis): A diagnosis d C F is a set
of faults consistent with the observations.

Definition 7 (Diagnoser): A diagnoser is a tuple D =
(Q,40,%,6,D,Y) such that: @ is a set of states, g, € Q
is an initial state, > is a set of labels, 6 C Q@ X ¥ x Q
is a transition relation, D C C is a set of diagnoses, and
Y : Q — D is a diagnosis map.

A diagnoser is a LTS extended by a set of diagnoses
and a diagnosis map. Similar to the LTS of a fault, the
labels correspond to measurement deviations. Associated
with the states are diagnoses, i.e., the set of possible faults
for the measurement deviations seen thus far.

The diagnoser construction procedure is shown as Al-
gorithm 1. Diagnosers are constructed by incrementally
composing smaller diagnosers, i.e., a diagnoser for a set
of faults F; is composed with a diagnoser for a set of
faults F}; to create a new diagnoser for the set of faults
F; U F}. Initially, we begin with diagnosers for singleton
fault sets. These are constructed using the individual fault
models. For a single fault f, we augment Ly to form Dy
by constructing the diagnosis map as mapping every state
except the initial state to {f}. The initial state is mapped
to the empty diagnosis &, because until a measurement
deviation is observed, we assume the system is operating
nominally. The diagnosers corresponding to the individual
faults of the circuit are shown in Fig. 4.

The construction algorithm operates by tracing paths in
the two given diagnosers. The algorithm is described as
combining two diagnosers, but can be easily be modified
to combine simultaneously % diagnosers. If the same event



Fig. 4. Diagnosers for the individual faults of the circuit. The diagnosers
for decreases in the parameter values are the same except for a reversal
in the signs.

label is available in both current states, then we advance in
both machines, i.e., (¢1,¢2) — (6(q1,0),8(q2,o)). Other-
wise, we advance in only one, e.g. if o can only be taken
from gy, then . (q1,q2) = (6(q1,0), g2). However, if the
measurement associated with ¢ has already deviated along
the current path (tracked using H), 6((¢1,92),0) is set
to &, because measurement deviations are only detected
once per measurement. This also occurs if the computed
diagnosis for the new state, d, is empty, because this
means the current sequence of measurement deviations
is inconsistent with the single fault assumption.

The diagnosis for the new state is formed by composing
the current diagnosis with the hypothesis set. The hypoth-
esis set, the set of faults consistent with the current event,
is formed as the union of the active states’ diagnoses (e.g.
{fi} U{f;}), where the active states as the states of the
diagnosers we are advancing to via 0. The new diagnosis
for the composed diagnoser state is constructed as the
intersection of the current diagnosis and the hypothesis
set. For example, if {f;, f;} is the current diagnosis and
the hypothesis set is {f;} then the new diagnosis is {f;},
which means that only f; is consistent with the current
sequence of measurement deviations.

The final composed diagnoser for the circuit is illus-
trated in Fig. 5. For example, consider the fault trace
fo Tedt f97. For f; * occurring as the first measurement
deviation, only C;" or Rj could have occurred, given
the known fault signatures and relative measurement
orderings. Therefore the new diagnosis is {C;", Ry }. For
eg+ occurring next, of our current faults, only R2+ is
consistent, therefore our new diagnosis is the intersection
of {Cf", RS} and {RJ}, which is {RJ}. At this point
we obtain a unique fault. The only possible measurement
deviation from here is fJ~ which must be consistent still
with {RJ}.

Theorem 1: The diagnoser constructed by Algorithm 1
for fault sets F; and F> represents all valid single fault
traces for the faults in F} and F5 and associates correct
diagnoses with the states.

Proof: By definition, the diagnoser for a single
fault f is correct because it represents Ly, so represents
all possible fault traces of f, and every state (except
the initial state) of L is consistent with f occurring.
Assume that diagnosers D; and Dy are correct. Then
they represent all possible fault traces for fault sets F}
and F5, respectively. At the initial state, if an event o

happens which can only happen in one of the diagnosers,
D;, then the diagnosis is Y;(0(gos, o)), because it must
be consistent with faults in F; that are consistent with o.
If o can occur in both diagnosers, then the diagnosis is
Y1(01(go1,0)) U Ya(d2(qo2, o)) because either a fault in
F occurred or a fault in F5 occurred, and the diagnosis
must be consistent with any fault in 7 U F5 consistent
with o. Assume that for a given (q1,92) # ¢, the
diagnoses are correct for the event sequences leading up
to (g1, q2). Then if an event o happens which can only
happen in one of the diagnosers, D;, then the diagnosis
is Y((¢q1,92)) NY;(;(¢s,0)), because it must consistent
with the previous diagnosis faults in F; consistent with
o. If o can occur in both diagnosers, then the diagnosis
is Y'((q1,42)) N (Y1(d1(q1,0)) U Y2(d2(g2,0))) because
it must be consistent with the previous diagnosis and
faults in F} U F5 consistent with o. Therefore, for any
state ¢, 6(q, o) has a correct diagnosis. So, for any two
diagnosers, the resulting diagnoser is correct. [ ]

The diagnoser for the circuit example, shown in Fig. 5,
illustrates certain properties of our approach. Since all the
leaves have diagnoses with a unique fault, then the system
is diagnosable. Any possible sequence of measurement
deviations corresponding to a single fault occurring are
captured in the diagnoser, and lead to unique diagnoses,
therefore the system is diagnosable. We can also see
that a unique diagnosis is obtained after only two of the
three measurements deviate, therefore one measurement is
redundant for single fault diagnosis of the selected faults.

B. Online Diagnoser Implementation

For a large number of faults and measurements, imple-
menting the diagnoser as a LTS for use in online diagnosis
is not space-efficient. Alternatively, we could create a
single diagnoser for each fault, run them simultaneously,
and combine the diagnoses. Individual diagnosers may be
large, however, if there are few measurement orderings
for the fault. Instead, we store only the single fault
effects, i.e., for each fault we store its fault signatures
and relative measurement orderings. As measurement
deviations occur, we can check consistency using this
stored information to generate our hypothesis sets and
refine our diagnoses.

Given a current diagnosis of d;,_; and an event o;
occurring, we can check which faults are consistent with
o; occurring. The hypothesis set h; consists of those
faults. If 4 = 1, then the new diagnosis d; is simply h;.
If ¢ > 1, then the new diagnosis must be consistent with
d;_1 and with the new information, i.e., d; = d;_1 N h;.
Therefore, given d;_1, the new diagnosis can be computed
simply as the subset of faults in d;,_; consistent with o;.

Thus, we are only constructing the path of the diag-
noser corresponding to the particular fault trace we are
observing. This is more space-efficient than constructing
the complete diagnoser offline and using it as an online
diagnoser. The complete diagnoser has, in the worst case,
O(|M|") possible fault traces, therefore the diagnoser
has, in the worst case, O(|M|!) states. Storing only fault
signatures and relative measurement orderings for each



Fig. 5.

fault, on the other hand, takes O(|F||M|?) space.

Time complexity, however, is in favor of the precom-
puted diagnoser. It needs only to wait for measurement
deviations to occur, transition to the next state, and
output the current diagnosis associated with the state.
Using appropriate data structures, these operations can
be achieved in constant time. For our online approach,
we need to form the hypothesis set corresponding to the
current measurement deviation. We need to look through
the fault signatures and measurement orderings to do this,
thus taking O(|F||M|?) time. We then need to compute
the new diagnosis, which is a function of the size of the
current diagnosis and the current hypothesis set. In the
worst case the hypothesis set consists of all faults, so is
|F'| in size. A diagnosis can be as large as |F'| also. The
intersection of the diagnosis and hypothesis set then takes
at worst O(|F'|) time. In practice, this time complexity is
reduced because as measurements deviate, less and less
faults are being considered.

V. CONCLUSIONS

In this paper, we presented discrete event system mod-
eling and diagnosis methodologies and their application
to continuous systems. The main issue in applying these
approaches is creating a system model that captures all
relevant system behavior. Quantization-based abstractions
create large, nondeterministic models. On the other hand,
our qualitative abstraction approach systematically creates
discrete event models of faulty system behavior and
enables a diagnosis approach that is easily applicable to
continuous systems.
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