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Abstract
Diagnosability is an important issue in the design
of diagnostic systems, because it helps identify
whether sufficient information is available to dis-
tinguish all the faults. Diagnosability of hybrid sys-
tems, however, is challenging, because mode tran-
sitions may occur during fault isolation. We present
an event-based framework for hybrid systems diag-
nosis based on a qualitative abstraction of measure-
ment deviations from nominal behavior. We derive
event-based fault models that describe the possible
measurement deviations sequences due to faults,
which, coupled with the mode transition structure
of the system, are used to automatically synthesize
an event-based diagnoser for hybrid systems. We
introduce notions of diagnosability for hybrid sys-
tems and show how the event-based diagnoser can
be used to verify the diagnosability of the system.
We apply our diagnosability analysis scheme to a
real-world electrical power distribution system.

1 Introduction
Diagnosability relates to the ability of a diagnostic system to
obtain unique diagnosis results given a set of observations.
Therefore, it is an important property that affects many as-
pects of the design of diagnostic systems. Based on diagnos-
ability, we can determine at design time if a set of sensors
provide sufficient discriminatory evidence, and, if not, what
additional sensors may be useful.

Many modern engineering systems are best modeled as hy-
brid systems, which combine continuous and discrete behav-
iors in a common framework. Yet, diagnosability analysis of
hybrid systems has largely been ignored. The task is com-
plicated, because the effects of faults may change from one
mode to another. In discrete-event systems, diagnosability
refers to obtaining a sequence of observable events that is
unique enough to identify which failure has occurred [Sam-
path et al., 1995; Zad et al., 2003]. Diagnosability of con-
tinuous systems has also been well-studied [Travé-Massuyès
et al., 2006], and can be seen in much the same way, if
fault signatures are viewed as events [Cordier et al., 2006;
Daigle et al., 2007a; Meseguer et al., 2008]. Diagnosability
of hybrid systems is studied in [Benedetto et al., 2007], but

is defined only as the ability to detect faults, and not to ob-
tain unique isolation results. Hybrid systems diagnosability
in the analytic redundancy relations framework is described
in [Bayoudh et al., 2006], and accounts for the changes in
fault signatures due to mode changes.

We adopt an event-based approach to hybrid systems di-
agnosability, where faults are viewed as unobservable events.
Measurement deviations (i.e., fault signatures) and controlled
mode changes form the set of observable events. As in [Sam-
path et al., 1995; Cordier et al., 2006], we say a system is
diagnosable if the sequence of observable events after fault
occurrence uniquely isolates the fault. Due to mode changes,
diagnosability of hybrid systems is typically harder to achieve
than for continuous systems. A hybrid system might be diag-
nosable within each individual mode, but mode transitions
during the fault isolation process may lead to loss of diagnos-
ability because fault effects could get masked. Therefore, we
introduce the more practical notion of Q-diagnosability, in
which diagnosability can be achieved by blocking or forcing
certain controlled mode changes during fault isolation. We
design event-based diagnosers, which are then used to verify
the diagnosability properties of the system. We apply our di-
agnosability scheme to a subset of the Advanced Diagnostics
and Prognostics Testbed (ADAPT) at NASA Ames, which is
a complex electrical power distribution system.

The paper is organized as follows. Section 2 describes the
qualitative fault isolation framework. Section 3 presents the
event-based fault modeling approach. Section 4 formalizes
diagnosability in our framework, and Section 5 describes the
design of the event-based diagnoser and how it can be used
to verify diagnosability. Section 6 presents the case study.
Section 7 concludes the paper.

2 Qualitative Fault Isolation
We consider the problem of single fault diagnosis in hy-
brid systems. We represent faults as unobservable events,
and consider both abrupt parametric faults, modeled as un-
expected step changes in system parameter values, and dis-
crete faults, modeled as unexpected changes in system mode.
Nominal mode transitions can occur due to known exter-
nal controller actions, or autonomous behaviors that depend
on internal system variables. In this paper, we assume
that autonomous mode changes do not occur during fault
isolation. Autonomous modes changes and multiple faults



Figure 1: Event-based diagnosis architecture.

can be incorporated in a more complex framework using
the techniques presented in [Narasimhan and Biswas, 2007;
Daigle, 2008]. This paper does not consider these extensions
to focus on the notions of diagnosability for hybrid systems.

The hybrid diagnosis architecture is illustrated in Fig. 1.
A hybrid observer, implemented as a switched extended
Kalman filter, computes the expected behavior of the plant
based on inputs u(t) and controlled mode change commands
σq [Narasimhan and Biswas, 2007]. The difference between
observed outputs, y(t), and expected outputs, ŷ(t), defines
the residual, r(t). The fault detector employs a statistical test
of significance to robustly determine if the residual is nonzero
using a sliding window technique [Biswas et al., 2003]. Mea-
surement deviations from nominal behavior are abstracted via
the symbol generator, and the event-based diagnoser uses the
sequence of events formed by measurement deviations, σi,
and controlled mode changes, σq , to isolate faults. In the fol-
lowing, we denote the set of modes as Q = {q1, q2, . . . , qr},
the set of faults as F = {f1, f2, . . . , fn}, and the set of mea-
surements, which are time-varying signals obtained from the
available sensors, as M = {m1,m2, . . . ,mp}.

Measurement deviations are abstracted using qualitative +,
-, and 0 values to form fault signatures [Mosterman and
Biswas, 1999]. Fault signatures represent the immediate
change in magnitude and the first nonzero derivative change.
They also represent what is termed discrete change behavior,
which describes whether the signal went from a nonzero to
a zero value (Z), a zero to a nonzero value (N), or had no
zero/nonzero value changes (X) [Daigle et al., 2008].

Definition 1 (Fault Signature). A fault signature for a fault f
and measurement m in mode q is the qualitative magnitude,
slope, and discrete change in m caused by the occurrence of
f , and is denoted by σf,m,q ∈ Σf,m,q. We denote the set of
all fault signatures for fault f and measurements M in mode
q as Σf,M,q , where Σf,M,q =

⋃
m∈M

Σf,m,q.

If the fault signature for a fault f and measurement m can
be uniquely determined, then Σf,m,q is a singleton. In gen-
eral, σf,m may not be unique due to ambiguities in the quali-
tative arithmetic.

In addition to fault signatures, we also capture the tem-
poral order of measurement deviations, termed relative mea-
surement orderings [Daigle et al., 2007b], which refer to
the intuition that fault effects will manifest in some parts of

the system before others. Measurement orderings are based
on analysis of the transfer functions from faults to measure-
ments [Daigle et al., 2007b].

Definition 2 (Relative Measurement Ordering). If fault f
manifests in measurement mi before measurement mj in
mode q, then we define a relative measurement ordering be-
tween mi and mj for fault f in q, denoted by mi ≺f,q mj .
We denote the set of all measurement orderings for f in q as
Ωf,M,q .

The fault signatures and measurement orderings can be au-
tomatically computed from a temporal causal graph represen-
tation that is derived from the system model, using a for-
ward propagation algorithm to predict qualitative effects of
faults on measurements and their possible sequences of devi-
ations [Mosterman and Biswas, 1999; Daigle, 2008].

Given a sequence of observable events, i.e., measurement
deviations and controlled mode changes, the fault isolation
task consists of matching event sequences to hypothesized
fault candidates. We define a candidate as a hypothesized
fault and a hypothesized system mode.

Definition 3 (Candidate). A candidate c is defined as c =
(fi, qi), where fi ∈ F is a hypothesized fault, and qi ∈ Q
is a hypothesized current mode. The set of all candidates is
denoted as C.

We wish to find candidates that are consistent with the se-
quence of observed events. A diagnosis is a collection of
candidates that are consistent with the observations provided
to the diagnoser after the time of fault occurrence, tf .

Definition 4 (Diagnosis). At time t ≥ tf , a diagnosis d ⊆ C
is a set of candidates consistent with the observations made
on the system during the interval [tf , t].

Fault isolation is performed incrementally, as new events
are received. At each new event, the current diagnosis is re-
duced by eliminating candidates that are inconsistent with the
new event, given the previous sequence of events. Ideally, the
diagnosis will eventually reduce to a unique candidate.

3 Event-based Fault Modeling
In order to characterize diagnosability in our framework, we
first need to define what it means for a candidate to be consis-
tent with a sequence of observable events. We do this by mod-
eling the possible sequences of measurement deviations that



faults may cause in different modes as event traces. Candidate
traces are then formed by a special composition of these indi-
vidual traces to account for the interleavings of events caused
by mode changes.

For a specific fault and mode, the combination of all fault
signatures and relative measurement orderings yields all the
possible ways a fault can manifest. We denote each of these
possibilities as a fault trace.
Definition 5 (Fault Trace). A fault trace for a fault f over
measurements M in mode q, denoted by λf,M,q , is a string
of length ≤ |M | that includes, for every m ∈ M that will
deviate due to f in q, a fault signature σf,m,q, such that the
sequence of fault signatures satisfies Ωf,M,q .

Note that the definition implies that fault traces are of max-
imal length, i.e., a fault trace includes deviations for all mea-
surements affected by the fault. We group the set of all fault
traces into a fault language. The fault model, defined by a
finite automaton, concisely represents the fault language.
Definition 6 (Fault Language). The fault language of a fault
f ∈ F with measurement set M in mode q, denoted by
Lf,M,q , is the set of all fault traces for f over measurements
M in q.
Definition 7 (Fault Model). The fault model for a fault f ∈ F
with measurement set M in mode q, is the finite automa-
ton that accepts exactly the language Lf,M,q , and is given by
Lf,M,q = (S, s0,Σ, δ, A) where S is a set of states, s0 ∈ S
is an initial state, Σ is a set of events, δ : S × Σ → S is a
transition function, and A ⊆ S is a set of accepting states.

The finite automata representation allows for the compo-
sition of the fault signatures and relative measurement or-
derings into fault models. The possible fault signatures and
measurement orderings can be composed automatically to
form the fault models based on the synchronization opera-
tion [Daigle et al., 2007a].

We need to define the candidate language in order to for-
mally characterize consistency of candidates. Unlike fault
traces, traces for candidates must contain both controlled
mode change events and measurement deviation events. We
denote the set of possible measurement deviation events as
ΣM , and the set of mode change events as ΣQ.

When a controlled mode change occurs during fault isola-
tion, the system model is updated, and a new nominal refer-
ence for symbol generation is computed. When a new mea-
surement deviates in the new mode, current hypothesized can-
didates must match the predictions for these candidates in
the new mode, ignoring previously deviated measurements,
in order to still be consistent. There may be different possi-
ble modes of fault occurrence, depending on the history of
control actions, therefore, the set of consistent candidates de-
pends also on the expected mode of fault occurrence. Given
this, we can now define a candidate trace. In the following,
we denote the mode transition function of the system by µ.
Definition 8 (Candidate Trace). An event trace λ = σ is a
candidate trace for c = (fi, qi) and initial mode of fault oc-
currence q0, if σ v λ′ ∈ Lfi,M,qi

where qi = µ(fi, q0). An
event trace λ = λiσi+1 is a candidate trace for c = (fi, qi+1)
and initial mode of fault occurrence q0, if λi is a candidate

trace for (fi, qi), and if σi+1 ∈ ΣQ then µ(σi+1, qi) = qi+1,
or if σi+1 ∈ ΣM then qi = qi+1 and σi+1 v λ′ ∈
Lfi,M−Mi,qi+1 . A candidate trace for c with initial mode q0
is denoted as λc,q0 .

In other words, given a candidate trace, an extension of that
trace by a measurement deviation event will also be a candi-
date trace for the same candidate, if the deviation is consistent
with the candidate for the new mode (i.e., it is consistent with
the fault language in the new mode). An extension of the trace
by a mode change event, however, will be a candidate trace
for a different candidate, namely, the one defined by changing
the mode of the old candidate to the new mode.

Clearly, there may be an infinite number of candidate traces
because controlled mode changes may keep occurring indefi-
nitely. However, we are only concerned with maximal traces,
i.e., those for which all measurements that will deviate in the
current mode have deviated (as with fault traces).

Definition 9 (Maximal Candidate Trace). A candidate trace
λc,q0 for c = (fi, qi) is maximal if Lf,M−Mi,qi = ∅, where
Mi is the set of deviated measurements for λc,q0 .

Now, we can define the language of a candidate c with re-
spect to an initial mode of fault occurrence q0, Lc,M,q0 as the
set of maximal candidate traces for c starting in q0.

Definition 10 (Candidate Language). The candidate lan-
guage for candidate c, measurements M , and initial mode
of fault occurrence q0, denoted as Lc,M,q0 , is the set of all
maximal candidate traces λc,q0 .

The candidate language consists of all consistent maximal
traces for the candidate. A maximal trace is consistent with
a candidate if the mode of the candidate can be reached via
the sequence of controlled mode changes in the trace, and the
measurement deviations within the trace match the fault in
the intermediate modes.

4 Diagnosability
Diagnosability is an important property of a system, because
it enables us to make guarantees about the unique isolation of
faults. We first provide definitions of distinguishability and
diagnosability and then describe how these notions are cap-
tured in our event-based framework.

If two candidates will always produce different effects,
we say they are distinguishable. For hybrid systems, we
must define distinguishability with respect to an initial ex-
pected mode at the point of fault occurrence, as with candi-
date traces.

Definition 11 (Distinguishability). For an expected mode
q ∈ Q at the point of fault occurrence, a candidate ci is dis-
tinguishable from a candidate cj , denoted by ci �q cj , if for
any possible sequence of controlled mode changes, ci always
eventually produces effects on the measurements that cj can-
not.

Candidate languages essentially capture the effects pro-
duced on the measurements for candidates, and thus charac-
terize consistency of candidates with observed effects. There-
fore, candidate languages can be used to establish distin-
guishability within our framework.



Lemma 1. For an expected mode q0 ∈ Q at the point of fault
occurrence, a candidate ci is distinguishable from a candi-
date cj given measurementsM and possible modesQ, if there
does not exist a pair of candidate traces λci,q0 ∈ Lci,M,q0
and λcj ,q0 ∈ Lcj ,M,q0 such that λci

v λcj
.

Proof. Assume ci is not distinguishable from cj , i.e., ci ∼q0
cj for initial mode of fault occurrence q0. Then, by defini-
tion, starting in mode q0, there must exist a maximal candi-
date trace by ci that cj can also produce. Therefore, there
must exist some maximal candidate trace for ci, i.e., some
λci,q0 ∈ Lci,M,q0 , and some sequence of events for cj that
is not distinct from λci,q0 . So, λci,q0 must be a candidate
trace λcj ,q0 for cj . Therefore, if ci ∼q0 cj then there ex-
its some λci,q0 ∈ Lci,M,q0 and λcj ,q0 ∈ Lcj ,M,q0 such
that λci,q0 v λcj ,q0 . By the contrapositive, if there does
not exist λci,q0 ∈ Lci,M,q0 and λcj ,q0 ∈ Lcj ,M,q0 such that
λci,q0 v λcj ,q0 , then ci �q0 cj .

Since candidate traces include mode change events, the
candidate languages cover all possible sequences of con-
trolled mode change events interleaved with measurement de-
viations. Therefore, checking distinguishability is equivalent
to checking for common traces. So, if a maximal candidate
trace, which is a sequence of controlled mode change events
and measurement deviation events, for some candidate is a
prefix for a second candidate, then if the first candidate oc-
curs and produces that trace, the candidates cannot be distin-
guished, because no more measurements will deviate (since
the trace is maximal).

In our framework, a system can be defined as follows.

Definition 12 (System). A system S is defined as
(F,M,Q,LF,M,Q), where F = {f1, f2, . . . , fn} is a set of
faults, M = {m1,m2, . . . ,mp} is a set of measurements,
Q = {q1, q2, . . . , qr} is a set of modes, and LF,M,Q is
the set of fault languages for each fault in each mode, i.e.,
LF,M,Q = {Lf,M,q : f ∈ F, q ∈ Q}.

Using distinguishability, we obtain the following notion of
diagnosability for a hybrid system.

Definition 13 (Diagnosability). A system S =
(F,M,Q,LF,M,Q) is diagnosable if for all ci and cj
and possible modes of fault occurrence q0 ∈ Q, where
|ci| ≤ l and |cj | ≤ l, ci �q0 cj .

If the system is diagnosable, then every two candidates
are distinguishable using the measurements in M . So, each
sequence of measurement deviations and controlled mode
changes we observe can be eventually linked to a diagnosis
with a unique candidate. Hence, we can uniquely isolate all
candidates of interest. If the system is not diagnosable, then
ambiguities may remain after fault isolation, i.e., after all pos-
sible measurement deviations have been observed.

The definition of diagnosability allows making guaran-
tees about fault isolation. Although controlled mode change
events affect the diagnosis, since the diagnoser has no con-
trol over which controlled mode change events are issued,
we cannot, in general, make any restrictions about when a
mode change event will be issued. Thus, diagnosability in
this sense is conservative. It may be possible, however, to

avoid ambiguous diagnosis results if certain mode changes
are blocked or executed. We define this as Q-diagnosability.

Definition 14 (Q-diagnosability). A system S =
(F,M,Q,LF,M,Q) is Q-diagnosable if for all ci and cj and
possible modes of fault occurrence q0 ∈ Q, where ci ∼q0 cj ,
then for every (maximal) λci,q0 where λci,q0 v λcj ,q0 , either
there exists some sequence of controlled mode changes λQ
where λci,q0λQ is not maximal for any candidate, or for
every λck

λQ = λci,q0 where λQ is a sequence of controlled
mode changes, λck

is not maximal for any candidate.

If the system is Q-diagnosable, then for any trace that vi-
olates diagnosability, there is some sequence of controlled
mode changes that can be applied such that the new trace is
no longer maximal, i.e., more measurement deviations will
occur, or for every partial trace that can become the violating
trace via a sequence of controlled mode changes, the partial
trace is not maximal. The first case corresponds to executing
controlled mode changes to ensure more measurement devi-
ations will occur. The second case corresponds to blocking
a sequence of controlled mode changes such that we never
encounter the violating trace in the first place.

5 Diagnoser Design
We construct from our fault models an event-based diagnoser,
which is an extended form of a finite automaton. If our system
is diagnosable, we can construct a diagnoser that uniquely
isolates all candidates. If not, the constructed diagnoser will
give ambiguous results for some maximal traces. But, if
the system is Q-diagnosable, the ambiguous results can be
avoided. We wish to use the diagnoser to help determine sys-
tem diagnosability. The goal of the event-based diagnoser is,
given a sequence of measurement deviation events and con-
trolled mode change events, to determine which faults are
consistent with the observed sequence. We define formally
a diagnoser in our framework.

Definition 15 (Diagnoser). A diagnoser for a fault set F ,
measurements M , and modes Q, is defined as DF,M,Q =
(S, I,Σ, δ, A,D, Y ) where S is a set of states, I ⊆ S is set of
initial states, Σ is a set of events, δ : S×Σ→ S is a transition
function, A ⊆ S is a set of accepting states, D ⊆ 2C is a set
of diagnoses, and Y : S → D is a diagnosis map.

A diagnoser is a finite automaton extended by a set of di-
agnoses and a diagnosis map. The initial states correspond
to possible starting modes at the point of fault occurrence. A
diagnoser takes events as inputs, which correspond to mea-
surement deviations σ ∈ ΣM and controlled mode changes
σ ∈ ΣQ. From the current state, a measurement deviation
event causes a transition to a new state. The diagnosis for
that new state represents the set of candidates that are consis-
tent with the sequence of events seen up to the current point
in time, i.e., it encodes the results that hypothesis generation
and refinement would obtain.

The accepting states of the diagnoser correspond to a fault
isolation result. We say that a diagnoser isolates a candidate
if it accepts all possible valid traces for the candidate and the
accepting states map to diagnoses containing the candidate.



Definition 16 (Isolation). A diagnoser DF,M,Q isolates a
candidate c if it accepts all λ ∈ Lc,M,q0 for all nominal
q0 ∈ Q, and for each s ∈ A that accepts a λ ∈ Lc,M,q0 ,
c ∈ Y (s).

The notion of isolation gives us an indication of correctness
of our diagnosers. If our diagnoser isolates all candidates,
then it covers all possible observable fault traces, and, there-
fore, is constructed correctly. We also would like to achieve
unique isolation of candidates, which is a stronger notion of
isolation. For unique isolation, we require that the diagnoser
isolates candidate c, but also that the corresponding accepting
states uniquely determine c. This means that the diagnoser
will accept all valid maximal candidate traces, but also that
each trace will uniquely identify a single candidate.

Definition 17 (Unique Isolation). A diagnoser DF,M,Q

uniquely isolates a candidate c if it isolates c and for each
s ∈ A that accepts some λc ∈ Lc,M,q0 , {c} = Y (s).

Unique isolation relates to diagnosability, so it can provide
us with guarantees about the ambiguity of the diagnosis re-
sults. If we can design a diagnoser that isolates all candidates
of interest, then by examining the diagnoser we can determine
if it uniquely isolates all candidates, and if so, that the system
is diagnosable. If not diagnosable, we can also use the diag-
noser to determine which traces result in ambiguities, and if
possible, avoid those traces by permitting or prohibiting cer-
tain controlled mode changes during isolation, i.e., achieve
Q-diagnosability.

Ultimately, we would like to systematically construct a di-
agnoser for a hybrid system S that isolates all possible candi-
dates. Further, we would like to show that if S is diagnosable,
then this diagnoser uniquely isolates all candidates. To do
this, we use individual diagnosers for each fault-mode pair,
and provide a composition operator to simultaneously com-
pose all the individual diagnosers to a global diagnoser that
isolates all the valid candidates.

First, we construct a diagnoser, D∗{f},M,q for each single
fault f within each mode q from Lf,M,q .

Definition 18 (D∗{f},M,q). Given fault f and mode q for mea-
surements M , with Lf,M,q = (S, s0, Σ, δ, A), D∗{f},M is
defined as (S, s0, Σ, δ, A′, {{(f, q)}}, Y ), where Y (s) =
{(f, q)} for all s ∈ S, andA′ = A if S 6= {s0}, orA′ = {s0}
otherwise.

We simultaneously compose each of the individual diag-
nosers D{f},M,q. In incremental consistency checking, we
project out measurements that have already deviated to obtain
the set of consistent candidates for a new observation. For a
diagnoser, the state-based form of the measurement projec-
tion operation on traces is formalized using boundaries and
boundary transition functions.

Definition 19 (Boundary). The boundary for a state s and
deviated measurements Mi, BMi

(s), is defined as the set of
all states δ(λ, s) such that λ contains only measurement de-
viation events corresponding to those in Mi.

The boundary for a state s is basically the set of states that
may be transitioned to from s via a trace λ consisting of only

events for measurements that have already deviated, i.e., mea-
surements corresponding to the events for traces in the his-
tory of the state. Using the notion of a boundary, we define a
boundary transition function with respect to a set of deviated
measurements.

Definition 20 (Boundary Transition Function). The bound-
ary transition function for an event σ, state s, and set of devi-
ated measurements Mi, denoted as δMi

(σ, s), is a transition
function that maps σ and s to some state s′, such that s′ = ∅
if the cardinality of {δ(σ, sB) : sB ∈ BMi(s)} is not 1, or
s′ is the single element in {δ(σ, sB) : sB ∈ BMi(s)}, other-
wise.

In other words, δMi(σ, s) returns the unique state that can
be reached from a boundary state of s via σ, or ∅ if there are
no states that can be reached or if the state is not unique. Be-
cause of the way the D∗{f},M,q diagnosers are computed, the
reachable state will always be unique or null, because traces
with the same set of measurements map to the same state. In
the following, we denote the measurements that have deviated
in a state s as M(s).

We now describe a composition operator, Π, that simulta-
neously combines the D∗{f},M,q for each possible (f, q) pair.
We split the mode set Q into nominal modes QN and faulty
modes QF .

Definition 21 (Π Composition). Given the set of all k (f, q)
diagnosers, D = {D∗{f},M,q : f ∈ F, q ∈ Q}, D∗F,M,Q ,
Π(D), where

• I = {(s0,1, s0,2, . . . , s0,k, q, (∅, q)) : q ∈ QN}
• Σ = Σ1 ∪ Σ2 ∪ . . . ∪ Σk ∪ ΣQ
• δ(σ, (si,1, si,2, . . . , si,k, qi, di)) =

(si+1,1, si+1,2, . . . , si+1,k, qi+1, di+1), where
σ ∈ ΣQ, all si+1,j = si+1,j , qi+1 = µ(σ, qi),
and di+1 = {(f, µ(σ, q)) : µ(σ, q) 6= ∅ ∧ (f, q) ∈ di}
• δ(σ, (si,1, si,2, . . . , si,k, qi, di)) =

(si+1,1, si+1,2, . . . , si+1,k, qi+1, di+1), where σ ∈ ΣM ,
qi+1 = qi, Mi = M((si,1, si,2, . . . , si,k, qi, di)),
si+1,j = si,j if δMi,j(σ, si,j) = ∅, or δMi,j(σ, si,j)
otherwise, and di+1 = {(f, q) ∈ di : σ v λ ∈
Lf,M−Mi,q} 6= ∅

• S is the set of all s reachable through δ from some s0 ∈ I
• A is the set of all si = (si,1, si,2, . . . , si,k, qi, di) ∈ S

where there exists some si,j ∈ si, with some sB,j ∈
BM(si)(si,j) where sB,j ∈ Aj , such that Yj(sB,j) ⊆∈
Y (si)

• D is the set of all di in each (si,1, si,2, . . . , si,k, qi, di) ∈
S

• Y ((si,1, si,2, . . . , si,k, qi, di)) = di

Theorem 1. The diagnoser D∗F,M,Q isolates all valid candi-
dates.

Proof. Assume initial mode of fault occurrence q0, candi-
date c, and trace λ = σ1σ2 . . . σk ∈ Lc,M,q0 . By the
definition of a candidate trace, σ1 is a candidate trace for
c′ = (fi, µ(f, q0)) if σ1 v λ′ ∈ Lf,M,µ(f,q0). Therefore,



(f, µ(f, q0)) ∈ hF,Mi(σ1), so by definition of ∧l, the re-
sultant diagnosis will contain (f, µ(f, q0)), so by definition
of δ, the corresponding state is in S. Assume λi is a can-
didate trace for c′ = (fi, qi) and has a corresponding state
s ∈ S. Then if σi+1 ∈ ΣQ, λiσi+1 is a candidate trace for
(fi, µ(σi+1, qi)) and by definition of δ has a corresponding
state s ∈ S and the associated diagnosis has (fi, µ(σi+1, qi)).
If σi+1 /∈ ΣQ, then λiσi+1 is a candidate trace for (fi, qi) if
σi+1 v λ′ ∈ Lf,M,µ(f,q0) and therefore by definition of a hy-
pothesis set, (fi, qi) ∈ hF,Mi

(σi+1), so by definition of ∧l,
the diagnosis will contain (fi, qi) and by definition of δ, will
have a corresponding state in S. Therefore, there is a state for
any valid candidate trace. Given a state s ∈ S with a trace that
is maximal for c = (fi, qi), the substate of s that corresponds
to a state in D∗f,M,qi

must have no measurement deviations
possible from its boundary, otherwise the trace would not be
maximal, and thus the boundary must contain an accepting
state.

Further, we can show that if the system S is diagnosable,
then the diagnoser uniquely isolates all candidates.

Theorem 2. A system S = (F,M,Q,LF,M,Q) is diagnos-
able if and only if D∗F,M,Q uniquely isolates all valid candi-
dates.

Proof. Assume S is diagnosable. Assume a c and λ ∈
Lc,M,Q. D∗F,M,Q isolates c, so must have corresponding ac-
cepting state s with c ∈ Y (s). Since S is diagnosable, there
cannot be a c′where c and c′ are not distinguishable, by def-
inition of diagnosability. So, there cannot be some common
subtrace λ that maps to an accepting state that has both c′

and c. So, D∗F,M,Q uniquely isolates all c. Assume D∗F,M,Q

uniquely isolates all c. Then each possible fault trace λ has
an accepting state s where c ∈ Y (s). Thus, there cannot be
some c′, with trace λ′ that reaches the same state, otherwise
c′ is in Y (s). Therefore, c and c′ are distinguishable, so S
is diagnosable. Thus S is diagnosable if and only if D∗F,M,Q
uniquely isolates all c.

6 Case Study
We apply the diagnosability framework to the Advanced
Diagnostics and Prognostics Testbed (ADAPT) deployed at
NASA Ames [Poll et al., 2007]. The testbed is functionally
representative of a spacecraft’s electrical power system, and
consists of three subsystems: (i) power generation, which in-
cludes two battery chargers, (ii) power storage, which con-
sists of three sets of lead-acid batteries, and (iii) power dis-
tribution, which consists of a number of relays and circuit
breakers, two inverters, and various DC and AC loads.

We consider a subset of ADAPT to demonstrate our ap-
proach, which includes a lead-acid battery, two relays, and
two DC loads. The battery is modeled by an electric cir-
cuit equivalent described in [Daigle, 2008] (see Fig. 2). The
battery supplies voltage to the relays through a parallel con-
nection, which in turn supply power to the two DC loads.
The selected measurements are the battery voltage, VB(t),
and the currents through the relays, IL1(t) and IL2(t), i.e.,
M = {IL1, IL2, VB}.

Figure 2: Electrical circuit equivalent for the selected subsys-
tem.

We consider faults in the battery, loads, relays, and sensors.
Common battery faults include loss of charge and resistance
increases brought about by battery use and age, which mani-
fest as a side effect of the chemical reactions. Loss of charge
is represented by a capacitance decrease, C−0 , and an increase
in internal losses byR+

1 . Faults can occur in the system loads,
and these are represented by increases or decreases in their re-
sistance values, RL1 and RL2A. For the sensors, we consider
bias faults, which produce abrupt changes in the measured
values manifesting as constant offsets. Sensor faults are la-
beled by the measured quantity they represent, e.g., V +

B rep-
resents a bias fault in the battery voltage sensor. We represent
discrete faults in Sw1 and Sw2 by fault events α and β, re-
spectively, where a subscript of 0 indicates a stuck-off fault,
and a subscript of 1 indicates a stuck-on fault.

6.1 Diagnosability Analysis
We denote the system mode as qij and a controlled mode
change to qij as σqij

, where i is the mode of Sw1, and j
is the mode of Sw2. We allow controlled mode changes that
switch the system from any one controlled mode to another,
i.e., ΣQ = {σq00 , σq01 , . . . , σq11}. We restrict discrete faults
to only occurring from expected modes where a deviation
would be produced, e.g., α1 would not produce any devia-
tions if it occurred in a mode where Sw1 was already on.

The fault signatures and relative measurement orderings
for the chosen faults are given in Table 1 for selected modes
(q∗∗ indicates the signatures and orderings are valid for any
mode). The nonlinearities in the battery introduce ambigu-
ity in the qualitative signatures, and this is denoted by the *
symbol, e.g., a signature of 0* may manifest as 0+ or 0-.
Since the sensors are not part of any feedback loops in the
system, sensor faults affect only the measurement provided
by the sensor. The other measurements are not affected, and
so the corresponding fault signatures are denoted by 00, indi-
cating no change in the measurement from expected behavior.

Selected fault models for ADAPT are shown in Fig. 3.
Consider the fault model LRL1+,q11 , shown in Fig. 3b. Note
that the M subscript is dropped in the notation. From the
orderings, the current through Load 1 must be the first to de-
viate, followed by the Load 2 current and battery voltage in
any order. The direction of the changes in IL2(t) and VB(t)
are unknown so both possibilities are represented. The indi-
vidual diagnosers for the same faults are shown in Fig. 4.

Given any one mode, the system is diagnosable. After at
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Figure 3: Selected fault models for ADAPT.
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Figure 4: Selected individual diagnosers for ADAPT.

Fault VB IL1 IL2 Measurement Orderings
(V +
B , q∗∗) +0,X 00,X 00,X VB ≺ IL1, VB ≺ IL2

(V −
B , q∗∗) -0,X 00,X 00,X VB ≺ IL1, VB ≺ IL2

(I+
L1, q∗∗) 00,X +0,X 00,X IL1 ≺ VB , IL1 ≺ IL2

(I−L1, q∗∗) 00,X -0,X 00,X IL1 ≺ VB , IL1 ≺ IL2

(I+
L2, q∗∗) 00,X 00,X +0,X IL1 ≺ VB , IL2 ≺ IL1

(I−L2, q∗∗) 00,X 00,X -0,X IL1 ≺ VB , IL2 ≺ IL1

(C−
0 , q11) +-,X +-,X +-,X ∅

(R+
1 , q11) 0-,X 0-,X 0-,X ∅

(R+
L1, q11) 0*,X -+,X 0*,X IL1 ≺ VB , IL1 ≺ IL2

(R−
L1, q11) 0*,X +-,X 0*,X IL1 ≺ VB , IL1 ≺ IL2

(R+
L2A, q11) 0*,X 0*,X -+,X IL2 ≺ VB , IL2 ≺ IL1

(R−
L2A, q11) 0*,X 0*,X +-,X IL2 ≺ VB , IL2 ≺ IL1

(α0, qα01) 0*,X -*,Z 0*,X IL1 ≺ VB , IL1 ≺ IL2

(α1, qα11) 0*,X +*,N 0*,X IL1 ≺ VB , IL1 ≺ IL2

(β0, q1β0) 0*,X 0*,X -*,Z IL2 ≺ VB , IL2 ≺ IL1

(β1, q1β1) 0*,X 0*,X +*,N IL2 ≺ VB , IL2 ≺ IL1

Table 1: Fault Signatures and Relative Measurement Order-
ings for the ADAPT Subsystem

most two measurement deviations, a unique candidate can be
isolated. However, over all modes, the system is not diagnos-
able. Fig. 5 gives a partial diagnoser for the system that illus-

trates this property, with F = {C−0 , R+
L1} and initial mode

q11 with σq01 and σq11 being the only controlled mode change
events. If I+−,X

L1 σq01 occurs, we reach an accepting state that
corresponds to a diagnosis with multiple candidates. After
that event, both C−0 and R+

L1 are consistent. Since the state
is accepting, it is possible that no new measurement devia-
tions will occur to distinguish the faults. The resistance fault
will have no visible effects on the rest of the measurements
in this mode, because the source of the deviations is cut off,
so we would have to wait infinitely long to verify R+

L1 as the
true fault. Therefore, the system is not diagnosable. We can
see, however, that the system is Q-diagnosable. If we prevent
σq01 from occurring, or change back to q11 if it does occur,
more measurements will deviate and we can distinguish the
candidate uniquely. Additional diagnosability results that in-
clude multiple faults and autonomous mode changes, as well
as diagnosis experiments, are reported in [Daigle, 2008].

7 Conclusions
We presented a systematic framework to create event-based
diagnosers for hybrid systems. Using the diagnosers, diag-
nosability of the system can be analyzed. We introduced the
notion of Q-diagnosability, in which unique isolation can be
achieved if certain controlled mode changes are prevented or
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Figure 5: Partial hybrid diagnoser for F = {C−0 , R+
L1} and initial mode q11.

executed during the fault isolation stage. We applied the tech-
nique to analyze the diagnosability of a subset of the ADAPT
system.
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