
Efficient Simulation of Component-Based Hybrid

Models Represented as Hybrid Bond Graphs

Matthew Daigle, Indranil Roychoudhury, Gautam Biswas, and
Xenofon Koutsoukos

EECS Department/ISIS, Vanderbilt University
Nashville, TN 37235, USA

matthew.j.daigle@vanderbilt.edu

1 Introduction

Modern engineering systems consist of a large number of interacting compo-
nents with nonlinear, hybrid behaviors. Building accurate and computationally
efficient simulation models for these systems is a challenging task. Researchers
have adopted component- [1] and actor-oriented [2] frameworks for modeling
large hybrid systems. Mathematical models specify individual component be-
haviors and formal models of computation define component interactions in
these frameworks, and they provide the basis for developing efficient schemes
for simulating the hybrid system behavior.

In our work, we adopt the Hybrid Bond Graph (HBG) paradigm [3], an ex-
tension of the Bond Graph (BG) modeling language [4], for component-based
modeling of embedded systems. HBGs are a domain-independent topological
modeling language that capture interactions among the physical and logical
processes that constitute a system. The parametric component-based model-
ing of hybrid systems and the inherent topological structure offer significant
advantages for analyzing system behavior and model-based fault diagnosis [5].

In this paper, we address the challenge of translating HBG models to com-
putationally efficient simulation models exploiting causal information that is de-
rived from the topological structure. Mode changes in HBG models, represented
as discrete switching events, cause dynamic changes in the topological structure,
and, therefore, the computational model during execution. We develop efficient
simulation algorithms by converting the HBG models to reconfigurable block
diagram structures, using the Hybrid Sequential Causal Assignment Procedure

to dynamically update the causal information. We demonstrate the technique
by deriving the block diagram model of an electrical power system, and running
simulation experiments in Matlab

R© Simulink R© [7].

2 Translating Hybrid Bond Graphs to Block Diagrams

BGs are domain-independent, topological, lumped-parameter models that cap-
ture the energy exchange mechanisms in physical processes [4]. The nodes of a
bond graph model energy storage, dissipation, transformation, and input-output



elements. Connections in the system are idealized, and modeled by two additional
nodes: 0- (or parallel) and 1- (or series) junctions. The connecting edges, called
bonds, define energy pathways between elements. Parameters of nonlinear BG
elements are defined by algebraic modulating functions, whose parameters are
system variables and external input signals [8]. HBGs introduce discrete config-
uration changes in continuous BG models by allowing junctions to be turned on
and off [3]. A two state (on and off ) finite state machine implements the junction
control specification with the transition guards expressed as boolean functions
of system variables and inputs. When a controlled junction is on, it behaves like
a conventional junction. When off, all bonds incident on the junction are deac-
tivated. The system mode at any time is determined by composing states of the
individual switched junctions. Details of the language are presented in [3].

There are two primary challenges in deriving simulation models from HBGs.
First is to avoid pre-enumeration of model configurations. A HBG model with m

components, each with ni switching junctions, defines 2
∑

m

i=1
ni different system

modes (or model configurations), where i = 1, 2, . . . m. When large, it is infeasible
to pre-enumerate all the model configurations. Therefore, model reconfiguration
at mode changes must be executed at run-time. Second is to avoid algebraic

loops. Component-based modeling of hybrid systems produces an underlying
mathematical model, which is a set of differential-algebraic equations (DAEs)
that may include algebraic loops. Generating fixed-point solutions for DAEs with
algebraic loops becomes computationally expensive when the fixed-point method
has to iterate to converge to a solution.

Causality Assignment The Sequential Causal Assignment Procedure (SCAP)
[4] applied to well-formed BG models assigns causal directions to all bonds in the
model. Causality defines the input-output relations between the associated effort
and flow variables. This provides the basis for a graphical block diagram (BD)
representation, which captures the complete computational model of the system
(This is equivalent to the DAE model of the system). The causally derived BD
model will also have the minimum number of algebraic loops [4].

Given causal assignments, there is a one-to-one mapping from the BG to
the BD model. For HBGs, however, the causal assignments may change when
junctions switch state. To avoid the costly pre-enumeration of system modes, we
implement an efficient BD reconfiguration scheme that recomputes the causal
assignments incrementally, starting from the junctions that switch state, and
propagating causal assignment changes till a new consistent assignment is de-
rived. Corresponding changes are made only to those blocks that have changes
in the causal assignments of their incident bonds.

The Hybrid Sequential Causal Assignment Procedure (Hybrid SCAP) per-
forms the causality assignment dynamically when mode changes occur in the
system. We assume that the states of all junctions are available before Hybrid

SCAP is applied. The algorithm starts with a queue of switched junctions. It picks
one junction off the queue, makes all the forced causal assignments, and propa-
gates effects of these assignments, making all the consequent forced changes till



none remain. Junctions with incomplete causal assignments to their bonds are
added to a second queue. When the first queue is empty, the algorithm picks
elements off the second queue, makes a valid causal assignment to an unforced
element, and propagates its effects to make any forced changes that result from
the chosen assignment. This process continues until all bonds have been assigned
causality. The propagation is local, so only a subset of the bonds change causal
assignments. Details of the algorithm can be found in [6].

Implementation In Matlab Simulink implementations, we have explored two
approaches. Implicit switching uses conditional statements to model the variable
input-output relations for block elements whose incident bond(s) can change
causality. The switching of the data flow between blocks is, therefore, implicit
in the model. The models generated are compact because mode descriptions are
expressed concisely as code. However, this approach results in more algebraic
loops in the Simulink model, because the input-output directional structure gets
buried in the code. During simulation, Simulink invokes fixed point solvers, and
the computational overhead affects the simulation efficiency.

Explicit switching uses switching elements to enumerate the data flow paths
and the corresponding computational structure for each configuration. At run
time, the appropriate switches are triggered to produce the changed block dia-
gram structure. The models created by this approach have many more atomic
blocks than the implicit models because multiple BD expansions are enumerated
for each element. Since the data flow paths are made explicit for each configura-
tion, no additional algebraic loops are created, however, the switching elements
incur overhead associated with zero-crossing detection.

3 Case Study: Electrical Power System

We applied our modeling and simulation framework to the Advanced Diagnostics
and Prognostics Testbed (ADAPT) system deployed at NASA Ames. The system
consists of power generation (solar panel and battery chargers), power storage

(three sets of lead-acid batteries), and power distribution (a number of DC to AC
converters and AC and DC loads) subsystems. Relays are used to configure the
system in different modes of operation, e.g., charge and/or discharge modes of the
batteries, as well as different power supply and load configurations. Because of
the large number of possible configurations involving different components, it is
infeasible to pre-enumerate all possible modes of operation. We have developed
HBG models for all of the components in the ADAPT testbed and used our
approach to simulate the system in different configurations [6].

We present the simulation results for a battery supplying power to two DC
loads in parallel, with relays that enable the loads to be switched on and off (see
Fig. 1). The Simulink model was run for 7, 000 seconds of simulation time with
the battery discharging through different load configurations. For this experi-
ment, the explicit switching implementation executed about 20% faster than the
implicit switching implementation. This difference in the simulation efficiency



0 2000 4000 6000
22

23

24

25
Battery Voltage

Time (s)

V
ol

ta
ge

 (
V

)

0 2000 4000 6000
0

10

20

30
Battery Current

Time (s)

C
ur

re
nt

 (
A

)

0 2000 4000 6000
0.4

0.6

0.8
Battery State of Charge

Time (s)

S
ta

te
 o

f C
ha

rg
e

0 2000 4000 6000
0

10

20

30
Load Currents

Time (s)

C
ur

re
nt

 (
A

)

 

 

Load1
Load2

Fig. 1. Example model and simulation results

was consistent with other configurations of the system. In future work, we will
formalize the computational modeling framework, and further study the compu-
tational efficiency for different systems.

Acknowledgments This work was supported in part by grants NSF CNS-
0347440 and NSF CNS-0615214, and a NASA USRA grant from Ames Research
Center. We gratefully acknowledge the help from Scott Poll and Ann Patterson-
Hine in building the ADAPT system models.

References

1. Liu, J., Lee, E.A.: A component-based approach to modeling and simulating mixed-
signal and hybrid systems. ACM Trans. Model. Comput. Simul. 12(4) (2002) 343–
368

2. Lee, E.A., Neuendorffer, S., Wirthlin, M.J.: Actor-oriented design of embedded
hardware and software systems. Journal of Circuits, Systems, and Computers 12(3)
(2003) 231–260

3. Mosterman, P.J., Biswas, G.: A theory of discontinuities in physical system models.
J Franklin Institute 335B(3) (1998) 401–439

4. Karnopp, D.C., Margolis, D.L., Rosenberg, R.C.: Systems Dynamics: Modeling and
Simulation of Mechatronic Systems. Third edn. John Wiley & Sons, Inc., New York
(2000)

5. Narasimhan, S., Biswas, G.: Model-based Diagnosis of Hybrid systems. IEEE
Transactions on Systems, Man and Cybernetics, Part A, to appear.

6. Daigle, M., Roychoudhury, I., Biswas, G., Koutsoukos, X.: Efficient simulation of
component-based hybrid models represented as hybrid bond graphs. Technical Re-
port ISIS-06-712, Institute for Software Integrated Systems, Vanderbilt University,
Nashville, TN, USA (2006).

7. MATLAB/Simulink: (http://www.mathworks.com/products/simulink/)
8. Manders, E.J., Biswas, G., Mahadevan, N., Karsai, G.: Component-oriented model-

ing of hybrid dynamic systems using the Generic Modeling Environment. In: Proc
of the 4th Workshop on Model-Based Development of Computer Based Systems,
Potsdam, Germany, (2006).


