
1

Distributed Prognostics Based on Structural Model
Decomposition

Matthew J. Daigle, Member, IEEE, Anibal Bregon, Member, IEEE, and Indranil Roychoudhury, Member, IEEE

Abstract—Within systems health management, prognostics fo-
cuses on predicting the remaining useful life of a system. In
the model-based prognostics paradigm, physics-based models
are constructed that describe the operation of a system and
how it fails. Such approaches consist of an estimation phase,
in which the health state of the system is first identified, and a
prediction phase, in which the health state is projected forward
in time to determine the end of life. Centralized solutions to
these problems are often computationally expensive, do not scale
well as the size of the system grows, and introduce a single
point of failure. In this paper, we propose a novel distributed
model-based prognostics scheme that formally describes how to
decompose both the estimation and prediction problems into
independent local subproblems whose solutions may be easily
composed into a global solution. The decomposition of the prog-
nostics problem is achieved through structural decomposition
of the underlying models. The decomposition algorithm creates
from the global system model a set of local submodels suitable
for prognostics. Independent local estimation and prediction
problems are formed based on these local submodels, resulting in
a scalable distributed prognostics approach that allows the local
subproblems to be solved in parallel, thus offering increases in
computational efficiency. Using a centrifugal pump as a case
study, we perform a number of simulation-based experiments to
demonstrate the distributed approach, compare the performance
with a centralized approach, and establish its scalability.

Index Terms—model-based prognostics, distributed prognos-
tics, structural model decomposition

ABBREVIATIONS & ACRONYMS

EOL end of life
PRMSE percent root mean square error
RA relative accuracy
RPM revolutions per minute
RSD relative standard deviation
RUL remaining useful life
UKF unscented Kalman filter
UT unscented transform

Corresponding author. M. J. Daigle is with NASA Ames Research Center,
Moffett Field, CA 94035 USA (e-mail: matthew.j.daigle@nasa.gov).

A. Bregon is with the Department of Computer Science, University of
Valladolid, Valladolid, Spain (e-mail: anibal@infor.uva.es).

I. Roychoudhury is with Stinger Ghaffarian Technologies, at NASA
Ames Research Center, Moffett Field, CA 94035 USA (e-mail: in-
dranil.roychoudhury@nasa.gov).

M. Daigle and I. Roychoudhury’s work has been partially supported by
the NASA System-wide Safety Assurance (SSAT) Project within the Aviation
Safety Program (ASP) under the Aeronautics Mission Directorate (ARMD),
and the NASA Autonomous Cryogenic Loading Operations (ACLO) Project
under the Office of the Chief Technologies (OCT). A. Bregon’s work has been
partially supported by Spanish MCI TIN2009-11326 grant.

NOTATION
x state vector
θ parameter vector
u input vector
y output vector
r performance requirement
R set of performance requirements
ω rotational velocity
τ torque
p pressure or probability
Q volumetric flow
T temperature
r friction coefficient
w wear parameter
M model/submodel
v variable
V voltage or set of variables
X set of states
Θ set of parameters
U set of inputs
Y set of outputs
c constraint
C set of constraints
εc equation of constraint c
α causal assignment
A set of causal assignments

I. INTRODUCTION

Systems health management is an engineering discipline
that seeks to improve the design and operation of complex
systems in the presence of faults and degradations. Prognostics
is an essential technology for systems health management
that centers on predicting the useful life of components,
subsystems, or systems. This information may be used to slow
damage progression, prolong system life, and optimize mainte-
nance activities. Model-based prognostics approaches capture
knowledge of how a system and its components fail through
the use of physics-based models that describe the underlying
physical phenomena [1]–[7]. These algorithms consist of two
parts: (i) estimation, which computes the current joint state-
parameter estimate of the system to determine the current
health state, and (ii) prediction, which projects the current joint
state-parameter estimate forward in time to determine end of
life (EOL) and/or remaining useful life (RUL).

To date, virtually all prognostics approaches employ a
centralized architecture. However, centralized approaches have
several drawbacks: they embody a single point of failure,
are computationally expensive, and do not scale well as the

2

size of the system increases. Distributed architectures, on
the other hand, offer several advantages. In particular, im-
plementation platforms are becoming increasingly distributed,
involving systems of smart sensors and smart components, in
addition to multi-core processors [8]. Distributed approaches
naturally take advantage of these new architectural paradigms,
and hence improve scalability and computational efficiency.
Distributed implementations on large systems are also easier
to maintain when components are added or removed from the
system.

Specifically, we propose a novel distributed prognostics
approach that exploits structural model decomposition [9]. In
a model-based prognostics paradigm, the prognostics problem
is defined by the underlying model. So, by decomposing
the system model, we decompose the model-based prognos-
tics problem. Several methods for structural model decom-
position have, in fact, been developed for the purposes of
diagnosis [10]–[13], but none for prognosis. In this work,
we adopt the model decomposition framework developed
previously in [14]. Like other structural model decomposition
approaches, the key feature of the derived submodels is that
they are computationally independent. Therefore, local prog-
nostics problems based on the submodels can be solved in-
dependently. As a result, solution of the subproblems requires
no communication between the algorithms. This approach also
provides more flexibility, allowing different algorithms to be
applied to each subproblem, and, thus, each subproblem can
be solved with the most appropriate strategy. The proposed
approach to distributed prognostics developed in this paper is
a fundamentally different approach from previous distributed
prognostics approaches, e.g. [15], [16]. In such approaches,
the global problem is still solved, and the computation is
simply distributed, whereas in our approach, the approach
is distributed by decomposing the global problem into local
subproblems that are solved in parallel.

In earlier work [17], preliminary results were presented in
which only the estimation problem was decomposed using
structural model decomposition as described in [10]. In this
paper, we show how the more general model decomposition
framework of [14] can be used to decompose both the esti-
mation and prediction problems for model-based prognostics.
The work of [14] shows how the estimation and prediction
problems can be decomposed, however, it does not provide
any algorithms for distributed prognostics. In this paper, we
develop a distributed prognostics architecture based on the
derived submodels, and includes the algorithms for distributed
prognostics. The model decomposition corresponds to a set of
local estimation and prediction problems that are smaller, and,
therefore, easier to solve and require less computation than the
global problem. Each local estimator computes a local joint
state-parameter estimate. The local predictors use the outputs
of the local estimators as inputs to their prediction routine,
yielding local EOL/RUL predictions. Global EOL/RUL pre-
dictions are then determined based on the local EOL/RUL
predictions.

We demonstrate our distributed prognostics methodology on
a centrifugal pump that is used for liquid oxygen transfer in
spacecraft fueling operations at Kennedy Space Center [2]. We

derive submodels for local estimation and for local prediction,
forming a distributed prognostics architecture for the pump.
We perform a number of simulation-based experiments, and
show that our distributed approach performs comparably to
the centralized approach in terms of accuracy and precision
of the life predictions, and at decreased computational cost.
In addition, since the value of a distributed approach is only
readily apparent with large-scale systems, we demonstrate the
improved scalability of the distributed approach using a large-
scale system composed of multiple pumps.

The contributions of the paper are as follows: (i) a novel
distributed model-based prognostics framework based upon
structural model decomposition, including algorithms for dis-
tributed estimation and prediction and the merging of local
results into global results; (ii) the application of the distributed
prognostics approach to a centrifugal pump with comprehen-
sive simulation-based experimental results that validate the
approach and compare to a centralized approach; and (iii)
a proof that the distributed approach is more efficient and
scalable than the centralized approach, with corroborating
experimental results.

The paper is organized as follows. Section II formally de-
fines the prognostics problem, describes the centralized prog-
nostics architecture, and introduces our proposed distributed
architecture. Section III describes the modeling methodol-
ogy and develops the centrifugal pump model. Section IV
overviews the model decomposition framework. Section V
formulates the distributed prognostics problem using model
decomposition, and provides an architecture for the pump.
Section VI describes distributed estimation, and Section VII
describes distributed prediction. Section VIII provides results
from simulation-based experiments, evaluates the approach,
and shows its scalability. Section IX compares our approach
with related work, and Section X concludes the paper.

II. MODEL-BASED PROGNOSTICS

In this section we first formulate the model-based prognos-
tics problem. We then describe the typical centralized prog-
nostic architecture, followed by our proposal for a distributed
architecture.

A. Problem Formulation

The goal of prognostics is the prediction of the EOL and/or
RUL of a system. We assume the system model may be
generally defined as

ẋ(t) = f(t,x(t),θ(t),u(t),v(t)),

y(t) = h(t,x(t),θ(t),u(t),n(t)),

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is the
unknown parameter vector, u(t) ∈ Rnu is the input vector,
v(t) ∈ Rnv is the process noise vector, f is the state
equation, y(t) ∈ Rny is the output vector, n(t) ∈ Rnn is
the measurement noise vector, and h is the output equation.1

In prognostics, we are interested in the time at which the
performance of a system lies outside some desired region

1Bold typeface denotes vectors, and na denotes the length of a vector a.

3

of acceptable behavior. Outside this region, we say that the
system has failed. The desired performance is expressed
through a set of nr requirements, R = {ri}nri=1, where
ri : Rnx×Rnθ×Rnu → B maps a given point in the joint state-
parameter space given the current inputs, (x(t),θ(t),u(t)), to
the Boolean domain B , {0, 1}, where ri(x(t),θ(t),u(t)) =
1 if the requirement is satisfied, and ri(x(t),θ(t),u(t)) = 0
if the requirement is not satisfied.

These individual requirements are combined into a single
threshold function TEOL : Rnx × Rnθ → B, defined as

TEOL(x(t),θ(t),u(t)) =

{
1, 0 ∈ {ri(x(t),θ(t),u(t))}nri=1

0, otherwise.

That is, TEOL evaluates to 1, i.e., the system has failed, when
any of the requirements are violated [2]. EOL is then defined
as

EOL(tP) ,

inf{t ∈ R : t ≥ tP ∧ TEOL(x(t),θ(t),u(t)) = 1},

i.e., EOL is the earliest time point at which TEOL is met. RUL
is expressed using EOL as

RUL(tP) , EOL(tP)− tP .

B. Centralized Architecture

In order to compute EOL, we need the current state of
the system, which is unknown. Therefore, in the model-based
prognostics paradigm, the problem of predicting EOL/RUL
is split into two sequential problems: (i) estimation, which
computes the state-parameter estimate, and (ii) prediction,
which simulates the current joint state-parameter estimate
forward in time to determine EOL/RUL [1], [2], [4].

The centralized architecture implementing the model-based
prognostics approach works as follows. In discrete time k,
the system receives inputs uk and provides measured outputs
yk. With the system model, the estimation module uses this
information to compute an estimate p(xk,θk|y0:k), accounting
for the presence of process noise v(t) and sensor noise n(t).
Given this state-parameter estimate, the prediction algorithm
uses the model to simulate this distribution out to EOL
to compute p(EOLkP |y0:kP) and p(RULkP |y0:kP) at given
prediction times kP . In order to do this, the prediction step
must hypothesize the future inputs to the system uk for
k ≥ kP .

The centralized approach solves the global prognostics
problem by solving global estimation and prediction problems.
Centralized approaches, however, introduce a host of potential
problems. Aside from the fact that most modern computa-
tional architectures are distributed, be it through multi-core
processors or networked systems, the most significant issue is
scalability. As the size of the problem increases, the methods
to solve it become more and more costly, and can suffer from
problems such as convergence of the estimates. We therefore
propose a distributed approach that solves the global problem
through a set of local subproblems.

C. Distributed Architecture

The key idea of the distributed approach is to decompose
the global model into a set of local submodels, with each local
submodel defining a local estimation or prediction subproblem.
For a given model, we generate a set of submodels with
local variables xi ⊆ x, θi ⊆ θ, ui ⊆ u, yi ⊆ y,
Ri ⊆ R, and with local equations f i, hi, and T iEOL. Once
the submodels have been defined, the distributed architecture
works as follows. In discrete time k, the system is provided
with inputs uk and provides measured outputs yk. The inputs
uk and the outputs yk are split into local inputs uik and
outputs yik. Local estimators compute p(xik,θ

i
k|yi0:k). From

the local estimates, the inputs to the local predictors are
constructed. The local predictors compute local EOL/RUL
predictions p(EOLikP |yi0:kP) and p(RULikP |yi0:kP) at given
prediction times kP . Local predictions are then merged into
global predictions p(EOLkP |y0:kP) and p(RULkP |y0:kP).

Models are decomposed by selecting some set of variables
as local inputs in addition to the global inputs u to form ui.
In this way, we can derive submodels that can be computed
independently of other submodels given the local inputs. This
means that local estimation and prediction subproblems are
independent and can be solved in parallel without communi-
cation. For the estimation phase, the measured sensor signals
can be used as additional inputs, exploiting the redundancy
they provide [18]. For the prediction phase, the insight is to
select, as local inputs, variables that can be predicted a priori
(e.g., a controlled quantity). The sets of local inputs chosen for
estimation and prediction may be different, in which case the
resulting submodels used for estimation and prediction will
be different, so the estimates required for prediction must be
reconstructed from the results of the local estimators.

Because the subproblems are smaller than the global prob-
lem and can be solved in parallel, this approach is more
efficient and scalable than a centralized approach, as will be
shown in Section VIII. However, the distributed approach does
have some limitations. For the estimation phase, information
will be lost due to the decomposition (specifically, the covari-
ance of decoupled variables), and noisy sensor signals will be
used as local inputs. Therefore, the distributed approach will
not obtain the same exact answer as the centralized approach.
We will show in Section VIII that, despite these limitations,
the performance of the distributed approach is comparable to
the performance of the centralized approach. Before presenting
the details of the distributed prognostics approach, in the next
section, we introduce the pump case study and its model.

III. CENTRIFUGAL PUMP MODELING

In this work, we use a centrifugal pump as a case study. The
particular pump under study is used to transfer liquid oxygen
for spacecraft fueling operations, the model for which was
originally presented in [2]. In practice, distributed prognostics
may not be warranted for a single component, but we use the
pump as a case study here because it is a complex but small
enough system to fully describe and demonstrate our approach.
In Section VIII, we will investigate the scalability properties
of our approach using a large-scale multi-pump system.

4

Fig. 1. Centrifugal pump.

In order to apply model-based prognostics, we must develop
a model of the system under consideration. This includes
identifying the state vector x(t), the parameter vector θ(t), the
input vector u(t), the output vector y(t), the state equation f ,
the output equation h, and the set of performance requirements
R. In this section, we summarize the main features of the
pump model, first describing the nominal model, and then
describing its damage progression models.

A. Nominal Model

Centrifugal pumps are used for the delivery of fluids in a
system. A schematic is shown in Fig. 1. Fluid enters the inlet,
and the impeller rotation, driven by an electric motor, forces
it through the outlet. Bearings help minimize friction along
the shaft, and are lubricated by oil residing in the bearing
housing. The pump state includes ω(t), the rotational velocity
of the pump; Q(t), the discharge flow; Tt(t), the thrust bearing
temperature; Tr(t) the radial bearing temperature; and To(t),
the oil temperature.

The rotational velocity of the pump is described using a
torque balance,

ω̇ =
1

J
(τe − rω − τL) , (1)

where J is the lumped motor/pump inertia, τe is the electro-
magnetic torque provided by the motor, r is the lumped friction
parameter, and τL is the load torque. We assume the pump is
driven by an induction motor, in which torque is produced
only when there is a slip, s, between the synchronous speed
of the supply voltage, ωs and the mechanical rotation, ω:

s =
ωs − ω
ωs

. (2)

The expression for the torque τe is derived from an equivalent
circuit representation for a three-phase induction motor [19]:

τe =
npR2

sωs

V 2

(R1 +R2/s)2 + (ωsL1 + ωsL2)2
, (3)

where R1 is the stator resistance, L1 is the stator inductance,
R2 is the rotor resistance, L2 is the rotor inductance, n is the
number of phases (typically 3), p is the number of magnetic
pole pairs, and V is the applied rms motor voltage. The
dependence of torque on slip creates a feedback loop that
causes the rotor to follow the rotation of the magnetic field.
Rotor speed is controlled by changing ωs, e.g., through the

use of a variable-frequency drive, which will also change V
to manage power usage.

Load torque τL is a polynomial function of the pump flow
rate and the impeller rotational velocity [20], [21]:

τL = a0ω
2 + a1ωQ− a2Q2, (4)

where a0, a1, and a2 are coefficients derived from the pump
geometry [21].

The rotation of the impeller creates a pressure difference
from the inlet to the outlet of the pump, which drives the
pump flow, Q. The pump pressure is computed as

pp = b0ω
2 + b1ωQ− b2Q2, (5)

where b0, b1, and b2 are coefficients derived from the pump
geometry. The parameter b0 is proportional to impeller area
A [22]. Flow through the impeller, Qi, is computed using the
pressure differences:

Qi = c
√
|ps + pp − pd|sign(ps + pp − pd), (6)

where c is a flow coefficient, ps is the suction pressure, and
pd is the discharge pressure. To account for fluid inertia, the
discharge flow is described by

Q̇ =
1

JQ
(Qo −Qi), (7)

where JQ is the flow inertia.
Pump temperatures are often monitored as indicators of

pump condition. The oil heats up due to the radial and thrust
bearings and cools to the environment:

Ṫo =
1

Jo
(Ho,1(Tt − To) +Ho,2(Tr − To)−Ho,3(To − Ta)),

(8)

where Jo is the thermal inertia of the oil, and the Ho,i terms
are heat transfer coefficients. The thrust bearings heat up due
to the friction between the pump shaft and the bearings, and
cool to the oil and the environment:

Ṫt =
1

Jt
(rtω

2 −Ht,1(Tt − To)−Ht,2(Tt − Ta)), (9)

where Jt is the thermal inertia of the thrust bearings, rt is
the friction coefficient for the thrust bearings, and the Ht,i

terms are heat transfer coefficients. The radial bearings behave
similarly:

Ṫr =
1

Jr
(rrω

2 −Hr,1(Tr − To)−Hr,2(Tr − Ta)), (10)

where Jr is the thermal inertia of the radial bearings, rr is the
friction coefficient for the radial bearings, and the Hr,i terms
are heat transfer coefficients.

The overall input vector u is given by

u(t) =
[
ps(t) pd(t) Ta(t) V (t) ωs(t)

]T
. (11)

The available pump sensors form the measurement vector
y given by

y(t) =
[
ω(t) Q(t) To(t) Tt(t) Tr(t)

]T
. (12)

5

0 1 2 3

380

400

420

440

460

V
ol

ta
ge

 (
V

)

Time (hours)

Input Voltage

0 1 2 3
360

380

400

420

440

460

V
el

oc
ity

 (
ra

d/
s)

Time (hours)

Rotational Velocity

0 1 2 3

0.11

0.12

0.13

0.14

Fl
ow

 (
m

3 /s
)

Time (hours)

Discharge Flow

0 1 2 3

300

325
T

em
pe

ra
tu

re
 (

K
)

Time (hours)

Thrust Bearing Temperature

0 1 2 3
290

300

310

320

330

T
em

pe
ra

tu
re

 (
K

)

Time (hours)

Radial Bearing Temperature

0 1 2 3
290

300

310

320

T
em

pe
ra

tu
re

 (
K

)

Time (hours)

Bearing Oil Temperature

Fig. 2. Nominal pump operation.

Fig. 2 shows nominal pump operation, with the parameters
given in Table I. The input voltage and line frequency are
varied to control the pump speed (commanded line frequency
is equal to the observed pump speed). Initially, slip is 1 so
an electromagnetic torque is produced, causing a rotation of
the motor to match the rotation of the magnetic field, with
a small amount of slip remaining. The pump rotation creates
fluid flow and heats up the bearings.

B. Damage Modeling

The performance requirements of the pump are specified by
efficiency and temperature limits:

η > η− (13)
To < T+

o (14)

Tt < T+
t (15)

Tr < T+
r , (16)

where the − superscript denotes a minimum and the +

superscript denotes a maximum, and efficiency η is defined
as η = V I

(pd−ps)Q for nominal inputs (I is rms motor current).
We take η− = 0.75η0, where η0 is the nominal efficiency.
When the maximum temperatures are reached, irreversible
damage occurs. Here, we use T+

o = 333 K, T+
t = 370 K,

and T+
r = 370 K.

The most significant damage mechanism for pumps is
impeller wear. It is represented as a decrease in impeller area
A [22], [23]. Since the impeller area is proportional to b0,
a decrease in impeller area causes a decrease in the pump
pressure, and, hence, the pump efficiency. We use the erosive

TABLE I
NOMINAL PUMP PARAMETERS

Parameter Value
ω(0) 376 rad/s
J 50 kg m2

r 8.0× 10−3 N m s
n 3 phases
p 1 pole pair
R1 3.6× 10−1 Ω
R2 7.6× 10−2 Ω
L1 + L2 6.3× 10−4 H
Q(0) 0 m3/s
a0 1.5× 10−3 kg m2

a1 5.8 kg/m
a2 9.2× 103 kg/m4

b0(0) 12.7 kg/m
b1 1.8× 104 kg/m4

b2 0 kg/m7

c 8.2× 10−5 m7/2/kg1/2

cl 1.0× 10−10 m7/2/kg1/2

JQ 5.0 s−1

To(0) 290 K
Jo 8.0× 103 K/J/s
Ho,1 1.0 W/K
Ho,2 3.0 W/K
Ho,3 1.5 W/K
Tr(0) 290 K
Jr 2.4 K/J/s
rr(0) 1.8× 10−6 N m s
Hr,1 1.8× 10−3 W/K
Hr,2 2.0× 10−2 W/K
Tt(0) 290 K
Jt 7.3 K/J/s
rt(0) 1.4× 10−6 N m s
Ht,1 3.4× 10−3 W/K
Ht,2 2.6× 10−2 W/K

wear equation [24] to describe how the impeller area changes
over time. The erosive wear rate is proportional to fluid
velocity times friction force. Fluid velocity is proportional to
volumetric flow rate, and friction force is proportional to fluid
velocity. We lump the proportionality constants into the wear
coefficient wA to obtain [2]

Ȧ = −wAQ2
i . (17)

Because A is proportional to b0, then ḃ0 = kȦ = −kwAQ2
i ,

so we estimate b0 and wb0 = kwA.
Another significant damage mechanism for pumps is bear-

ing wear, which is captured as an increase in the friction co-
efficient. Sliding and rolling friction generate wear of material
which increases the coefficient of friction [2], [3], [24]:

ṙt = wtrtω
2, (18)

ṙr = wrrrω
2, (19)

where wt and wr are the wear coefficients. The slip com-
pensation provided by the electromagnetic torque generation
masks small changes in friction, so it is only with very large
increases that a change in ω will be observed. Changes in
friction manifest more strongly in the bearing temperatures,
eventually driving them to the temperature limits.

6

So, the full state vector is

x(t) =
[
ω(t) Q(t) To(t) Tt(t) Tr(t) b0(t) rt(t) rr(t)

]T
.

(20)

The initial conditions for b0, rt, and rr are given in Table I.
The wear parameters form the unknown parameter vector, i.e.,

θ(t) =
[
wb0 wt wr

]T
. (21)

IV. MODEL DECOMPOSITION

To decompose the problem of model-based prognostics, we
decompose the underlying structural model. We use the model
decomposition framework described in [14], but simplify it,
without loss of generality, by removing the notion of auxiliary
variables (intermediate variables derived from the states, pa-
rameters, and inputs). This simplifies the model decomposition
algorithm and allows us to make guarantees of the minimality
of the derived submodels.

We introduce the requisite notation and concepts of the
model decomposition framework in the following. Additional
details and the full version of the framework can be found
in [14]. We begin with the definition of a model.

Definition 1 (Model). A model M∗ is a tuple M∗ = (V,C),
where V is a set of variables, and C is set of constraints. V
consists of four disjoint sets, namely, the set of state variables,
X; the set of parameters, Θ; the set of inputs, U ; and the set
of outputs, Y . Each constraint c = (εc, Vc) ∈ C consists of
an equation εc involving variables Vc ∈ V .

Input variables u ∈ U are known or measured, and cor-
respond to the input signals u(t). The subset of the outputs
corresponding to the (measured) sensor signals y(t) are de-
noted as Y ∗ ⊆ Y . Parameters θ ∈ Θ include explicit model
parameters corresponding to θ(t) that are used in the model
constraints. Θ consists only of those parameters that are to be
made explicit for joint state-parameter estimation.

As shown in Defn. 1, a constraint c = (εc, Vc) includes
an equation εc over the set of variables Vc. These constraints
are essentially representative of the vector functions f and h,
along with the requirements R. We associate explicit variables
for the evaluation of the performance requirements, e.g., ei =
ri(x(t),θ(t),u(t)). Note that, typically, a given ri is only a
function of a subset of the states, parameters, and inputs. Here,
the ei variables become part of Y , and are not included in
Y ∗. We denote by E ⊂ Y the variable set associated with the
performance requirement evaluations.

For the pump model, we have the variable sets X = {ω,
Q, To, Tt, Tr, b0, rt, rr}, Θ = {wb0 , wt, wr}, U = {ps, pd,
Ta, V, ωs}, and Y = {ω∗, Q∗, T ∗o , T ∗t , T ∗r , e1, e2, e3, e4}.
Here, Y ∗ = {ω∗, Q∗, T ∗o , T ∗t , T ∗r } and E = {e1, e2, e3, e4},
where the variables e1 to e4 correspond to the requirements
described in Eq. 13 to 16. The ∗ superscript is used on output
variables that are associated with sensors.

The notion of a causal assignment is used to specify the
computational causality for a constraint c, by defining which
v ∈ Vc is the dependent variable in equation εc.

Definition 2 (Causal Assignment). A causal assignment α
to a constraint c = (εc, Vc) is a tuple α = (c, voutc), where
voutc ∈ Vc is assigned as the dependent variable in εc.

We write a causal assignment of a constraint using its
equation in a causal form, with := to denote explicitly the
causal (i.e., computational) direction.

We say that a set of causal assignments A, for a modelM∗
is valid if
• For all v ∈ U ∪ Θ, A does not contain any α such that
α = (c, v).

• For all v ∈ Y , A does not contain any α = (c, voutc)
where v ∈ Vc − {voutc }.

• For all v ∈ V −U−Θ, A contains exactly one α = (c, v).
A causal model is a model extended with a valid set of

causal assignments.

Definition 3 (Causal Model). Given a model M∗ = (V,C),
a causal model for M∗ is a tuple M = (V,C,A), where A
is a set of valid causal assignments for M∗.

For the pump model, the causal constraints are as follows.
For the states, we have

ω :=

∫ t

0

ω̇ dt, (α1)

Q :=

∫ t

0

Q̇ dt, (α2)

To :=

∫ t

0

Ṫo dt, (α3)

Tt :=

∫ t

0

Ṫt dt, (α4)

Tr :=

∫ t

0

Ṫr dt, (α5)

b0 :=

∫ t

0

−wb0Q2
i dt (α6)

rt :=

∫ t

0

ṙt dt, (α7)

rr :=

∫ t

0

ṙr dt, (α8)

where ω̇ is given by Eq. 1, Q̇ by Eq. 7, Ṫo by Eq. 8, Ṫt by
Eq. 9, Ṫr by Eq. 10, Qi by Eq. 6, rt by Eq. 18, and rr by
Eq. 19. The initial conditions are provided in Table I. For the
outputs, we have

ω∗ := ω (α9)
Q∗ := Q, (α10)
T ∗o := To, (α11)
T ∗t := Tt, (α12)
T ∗r := Tr. (α13)

For the performance requirements, we have

e1 := (η > η−), (α14)

e2 := (To < T+
o), (α15)

e3 := (Tt < T+
t), (α16)

e4 := (Tr < T+
r). (α17)

7

wb Qb0

rt

rr

ω

Tt

To

Tr

wt

wr

0

ps

pd

V ωs

Tt
*

To
*

Tr
*

Q*

ω*e1

e3

e2

e4

Ta

Fig. 3. Causal graph for the pump model.

We visualize a causal modelM using a directed graph G =
(N,A), where N is the set of nodes corresponding directly
to the variables V in M, and A is the set of arcs, where
for every (c, voutc) ∈ A, we include an arc (v′, voutc) for each
v′ ∈ Vc−{voutc }. The causal graph corresponding to the pump
model is given in Fig. 3. In the graph, we mark inputs with
dashed circles and states with dashed squares.

In order to decompose a model into submodels, we need to
break internal variable dependencies. We do this by selecting
certain variables as local inputs. Given the set of potential local
inputs (in general, selected from V) and the set of variables
to be computed by the submodel (selected from V −U −Θ),
we create from a causal model M a causal submodel Mi, in
which a subset of the variables in V are computed using a
subset of the constraints in C. In this way, each submodel
computes its variable values independently from all other
submodels. Further, if the local input values are exactly the
same as the corresponding variables in the global model, the
values of local outputs for the submodel will exactly reproduce
the values of the corresponding variables in the global model.
A causal submodel can be defined as follows.

Definition 4 (Causal Submodel). A causal submodel Mi of
a causal model M = (V,C,A) is a tuple Mi = (Vi, Ci,Ai),
where Vi ⊆ V , Ci ⊆ C, and Ai ∩ A 6= ∅.

When using outputs (from Y ∗) as local inputs, the causality
of these constraints must be reversed, and so, in general, Ai
is not a subset of A. All remaining causal assignments in Ai
will still be found in A.

The procedure for generating a submodel from a causal
model is given as Algorithm 1. Given a causal modelM, a set
of variables that are considered as local inputs U∗, and a set
of variables to be computed V ∗, the GenerateSubmodel
algorithm derives a causal submodelMi that computes V ∗ us-
ing U∗. We provide here a simplified version of the algorithm
presented in [14], and refer the reader to [14] for the extended
algorithm and additional details. We briefly summarize the

Algorithm 1 Mi = GenerateSubmodel(M, U∗, V ∗)
1: Vi ← V ∗

2: Ci ← ∅
3: Ai ← ∅
4: variables← V ∗

5: while variables 6= ∅ do
6: v ← pop(variables)
7: c← GetBestConstraint(v, Vi, U

∗,A)
8: Ci ← Ci ∪ {c}
9: Ai ← Ai ∪ {(c, v)}

10: for all v′ ∈ Vc do
11: if v′ /∈ Vi and v′ /∈ Θ and v′ /∈ U∗ then
12: variables← variables ∪ {v′}
13: end if
14: Vi ← Vi ∪ {v′}
15: end for
16: end while
17: Mi ← (Vi, Ci,Ai)

algorithm below.
In Algorithm 1, the variables queue represents the set of

variables that have been added to the submodel but have not
yet been resolved, i.e., they cannot yet be computed by the
submodel. This queue is initialized to V ∗, the set of variables
that must be computed by the submodel. The algorithm then
iterates until this queue has been emptied, i.e., the submodel
can compute all variables in V ∗ using only variables in
U∗. For each variable v that must be resolved, we use the
GetBestConstraint subroutine (Subroutine 2) to find the
constraint that should be used to resolve v in the minimal (in
the number of constraints) way.

The GetBestConstraint subroutine (simplified
from [14]) tries to find a constraint that completely resolves
the variable, i.e., resolves v without further backward
propagation (all other variables involved in the constraint
are in Vi ∪ Θ ∪ U∗). Such a constraint may be the one that
computes v in the current causality, if all needed variables are
already in the submodel (in Vi) or are available local inputs

8

Subroutine 2 c = GetBestConstraint(v, Vi, U
∗,A)

1: cv ← find c where (c, v) ∈ A
2: if (Vcv − {v}) ⊆ Vi ∪ U∗ then
3: return cv
4: else
5: for all y ∈ Y ∗ ∩ U∗ do
6: cy ← find c where (c, y) ∈ A
7: if v ∈ Vcy and (Vcy − {v}) ⊆ Vi ∪ U∗ then
8: return cy
9: end if

10: end for
11: end if
12: return cv

(in U∗); or such a constraint may be one that computes a
measured output y∗ ∈ U∗, in which case the causality will be
modified such that y∗ becomes an input, i.e., the constraint in
the new causality will compute v rather than y∗. If no such
constraint exists, then the constraint that computes v in the
current causal assignment is chosen, and further backward
propagation will be necessary.

For example, consider generating a submodel for the pump
with U∗ = {V, ωs, Q∗} and V ∗ = {ω∗}. We first try to resolve
ω∗ (see Fig. 3). To compute ω∗ in the given causality we
need to include ω in the submodel. To compute ω we need
to include V , ωs, Q, and ω. Both V and ωs are in U∗, and
ω is in V , so these variables are resolved. To compute Q,
we have two options: compute using pd, b0, ps, Q, and ω,
or compute using Q∗ with the corresponding constraint in the
causality such that Q is computed. The minimal resolution is
the second option, so Q∗ is added to the submodel and the
causality of the involved constraint is modified. Since Q∗ is
in U∗, it is resolved. Now all variables in the submodel are
resolved and the algorithm is complete.

Clearly, there are many submodels that compute any given
V ∗ using a given U∗. The global model is one such solution.
Algorithm 1 finds a minimal submodel that satisfies this, which
is guaranteed in Subroutine 2 by resolving a variable without
further backward propagation whenever possible. There may
be multiple submodels that are equally minimal (i.e., due to a
choice of which local input to use), and the algorithm returns
the first that it finds.

The algorithm also generates only complete submodels, i.e.,
the submodels contain at least the variables needed to compute
its V ∗. This is guaranteed because the algorithm only stops
propagation at variables included in Vi ∪Θ ∪ U∗ [14].

In the worst case, the algorithm must visit all variables and
constraints. On each variable, Subroutine 2 is called, which in
the worst case considers all variables in Y ∩U∗. So the overall
worst-case time complexity is O((|V |+ |E|) · |Y ∩U∗|). Since
(Y ∩U∗) ⊂ V , the algorithm is polynomial in the model size.
On average some amount of decomposition will be possible
so the complexity will be much lower in practice.

In the next section we describe how this model decomposi-
tion algorithm is used to decompose a model for the explicit
purposes of distributed estimation and distributed prediction.

V. DISTRIBUTED PROGNOSTICS ARCHITECTURE

The distributed model-based prognostics architecture is
based on structural model decomposition, with local estimation
and prediction subproblems based on derived local submodels.
For estimation, we construct minimal submodels, one for
each output of the model that corresponds to a sensor, i.e.,
for each y∗ ∈ Y ∗. As discussed in Section II-C, we use
measured sensor signals as local inputs in addition to U .
For each output y∗ ∈ Y ∗, we create a submodel using
GenerateSubmodel(M, U ∪ (Y ∗ − {y∗}), {y∗}), i.e., we
use as local inputs the inputs to the global model along with all
sensor outputs except for y∗, and the only local output is y∗.
We define a local estimator based on that local submodel (e.g.,
Kalman filter, unscented Kalman filter, particle filter, etc.).

Using noisy sensors as local inputs to the estimation sub-
problems may, of course, result in a loss of accuracy and
robustness of the local estimators. This is the cost of deriving
independent local estimators. Without sensor noise, the local
estimators would produce the same results as a centralized
estimator, and as noise is added, performance may degrade.
Note of course that the centralized estimator must deal also
with sensor noise and so its performance will degrade as
well. In Section VIII we investigate the effects of increased
sensor noise on estimation performance for both the distributed
and centralized cases. In the situation where some sensors
are unreliable or extremely noisy, they can be removed from
the set of local inputs. To improve robustness, multi-output
estimators can also be derived, instead of the proposed single-
output estimators, but setting V ∗ ⊆ Y ∗ (the global model can
be recovered by setting V ∗ = Y ∗).

The causal graphs for the resulting submodels for the pump
are shown in Fig. 4. We obtain five submodels. The submodel
for ω∗ has X = {ω} and Θ = ∅; the submodel for Q∗ has
X = {Q, b0} and Θ = {wb0}; the submodel for T ∗o has X =
{To} and Θ = ∅; the submodel for T ∗t has X = {Tt, rt} and
Θ = {wt}; and the submodel for T ∗r has X = {Tr, rr} and
Θ = {wr}. Note that the estimation submodels do not contain
the performance requirements, as these are not required to
compute the outputs, so are not included in the submodels
derived by the decomposition algorithm.

If the measurement set changed, then the resulting local sub-
models for estimation would change also. For example, con-
sider a reduced measurement set of Y ∗ = {ω∗, Q∗, T ∗t , T ∗r },
i.e., T ∗o is no longer measured. Then only four submodels
would result, one for each sensor. The submodels for w∗ and
Q∗ remain the same, but since T ∗o can no longer be used
as a local input, the T ∗t and T ∗r submodels would have to
include the To state and instead use T ∗r and T ∗t as local inputs,
respectively. The corresponding causal graphs are shown in
Fig. 5.

Prediction requires hypothesizing future inputs to the sys-
tem. Therefore, when selecting local inputs for model de-
composition, we can select only those variables that can be
predicted a priori. For example, for the pump, we can use
ω as a local input because it is a controlled variable, and
we know what the future controlled values are. On the other
hand, Tr cannot be used, since it is evolving due to rt, which

9

Q ω

V ωs

Q*

ω*

(a) Causal graph for ω estima-
tion submodel.

wb Qb0 ω
0

ps

pd Q*

ω*

(b) Causal graph for Q estimation submodel.

Tt

To

Tr

Tt
*

To
*

Tr
*

Ta

(c) Causal graph for To estimation sub-
model.

rtω Tt

To

Tt
*

To
ω Ta

wt

(d) Causal graph for Tt estimation submodel.

rrω

To

Tr

wr

To
*

Tr
*

ω* Ta

(e) Causal graph for Tr estimation submodel.

Fig. 4. Causal graphs for pump estimation submodels.

is changing in time depending on wt, and To, which is in
turn affected by Tt and rt which are changing in time due
to wt. The fault propagation among the pump temperatures
prohibits the use of any of the temperature variables being
used as local inputs. If no variables exist that can be predicted
a priori outside of U , then the prediction problem cannot be
decomposed, and the global model must be used for prediction.

Besides U , local inputs can come from X or Y . In
some cases, it is advantageous to add additional “virtual”
outputs if these variables can be predicted a priori but are
not already in X or Y , to include in U∗. We construct
for each performance requirement a submodel that evaluates
the requirement. Because EOL is reached when any one of
the performance requirements are violated, we can evaluate
them independently to obtain local EOL distributions and
then take the minimum to get the global EOL distribution.
For each variable e ∈ E, we create a submodel using
GenerateSubmodel(M, UP , {e}), where UP ⊆ X ∪ U ∪
Y ⊇ U is the set of variables that can be predicted a priori.

For the pump model, UP consists of U and ω, as just
mentioned. The causal graphs for the resulting submodels are
shown in Fig. 6. We obtain one submodel associated with the
efficiency requirement, and three submodels associated with
the temperature requirements. For the temperature require-
ments, however, aside from the performance requirement in-
cluded, each submodel is exactly the same (e.g., the submodel
for e2 is that corresponding to the causal graph in Fig. 6b with
the e3 and e4 variables and constraints removed). This means

that the temperatures cannot be decomposed (due to the fault
propagation between them). Therefore, we merge these three
submodels into one submodel, to avoid unnecessary computa-
tion, using GenerateSubmodel(M, UP , {e2, e3, e4}).

As in the centralized scheme, the prediction algorithm
uses the state-parameter estimates as input. So, the required
estimates must be constructed from the local estimates of the
submodels used for estimation. A prediction submodel has a
set of states Xi and parameters Θi, and must construct a local
distribution p(xik,θ

i
k|yi0:k) from the estimates provided by the

local estimators. To do this, we assume that the local state-
parameter estimates may be sufficiently represented by a mean
µi and covariance matrix Σi. For each prediction submodel
i, we combine the estimates from estimation submodels that
estimate states and parameters in Xi ∪Θi into µi and covari-
ance Σi. If there is overlap in the state-parameter estimates,
i.e., if two submodels both estimate the same state variable x
or parameter θ, then we take the average value for common
means and covariances (alternate strategies may also be used).
Some covariance information lost due to the decoupling will
appear as zeros in the recovered covariance matrix. Each
prediction submodel i computes a local EOL/RUL distribution,
i.e., p(EOLikP |yi0:kP) and p(RULikP |yi0:kP). The global EOL
is determined by the minimum of all the local distributions,
since TEOL is 1 whenever any of the local constraints are
violated.

The distributed prognostics architecture for the pump is
shown in Fig. 7. Here we had derived five submodels for the

10

Fig. 7. Distributed prognostics architecture for the pump.

rt Tt

To

Tr

wt

Tt
*

Tr
*

Ta

ω

ω*

(a) Causal graph for Tt estimation submodel.

rr

Tt

To

Tr

wr

Tt
*

Tr
*

Ta

ω

ω*

(b) Causal graph for Tr estimation submodel.

Fig. 5. Causal graphs for pump estimation submodels when T ∗o is not
measured.

purposes of estimation, and two for prediction. We find that
the submodel estimating ω∗ is actually not needed, because
the only state it estimates is ω (see Fig. 4a), and this state is
not required by any of the prediction submodels (see Fig. 6).
Therefore, we need only four submodels on which to base our
local estimators, M1

E that estimates Q∗, M2
E that estimates

T ∗o , M3
E that estimates T ∗t , and M4

E that estimates T ∗r . For

wb Qb0 ω
0

ps

pd Q*

ω*e1

(a) Causal graph for flow prediction submodel.

rt

rr

ω

Tt

To

Tr

wr

ω*

e3

e2

e4

Ta

wt

(b) Causal graph for temperature requirements submodel.

Fig. 6. Causal graphs for pump prediction submodels.

prediction, we have M1
P that predicts the violation of the

efficiency requirement, and M2
P that predicts the violation

of the temperature requirements.
The global inputs and outputs are first split into the local

inputs and outputs based on the Ui and Yi of the submodels
derived for estimation. For example, M1

E uses as inputs ps,
pd, and ω∗ (the measured value of ω), and computes a single
output, Q∗. The local estimates are computed. M2

P builds its

11

local state using the estimates of To from the M2
E estimator,

wt, rt, and Tt from the M3
E estimator, and wr, rr, and Tr

from theM4
E estimator. The local predictors compute the local

EOL/RUL predictions, with the predictor for M1
P computing

the EOL for the efficiency requirement, and the predictor for
M2

P computing the EOL for the temperature requirements.
The local predictions are then merged into the global predic-
tion. The next two sections describe the algorithms used for
local estimation and local prediction.

VI. DISTRIBUTED ESTIMATION

As described in Section V, in our distributed estimation
scheme, the local estimator for each submodel Mi

E produces
a local estimate p(xik,θ

i
k|y0:k), where xik ⊆ xk and θik ⊆ θk.

Any suitable algorithm may be used for joint state-parameter
estimation on any of the local subproblems.

In this paper, we use an unscented Kalman filter (UKF) [25],
[26] with a variance control algorithm [27] for the estimation
problems. The UKF assumes the general nonlinear form of
the state and output equations described in Section II, but
restricted to additive Gaussian noise. The pump model satisfies
these constraints.

We review here the UKF, and refer the reader to [25], [26]
for details. The UKF approximates a distribution using the
unscented transform (UT). The UT takes a random variable
x ∈ Rnx , with mean x̄ and covariance Pxx, which is related
to a second random variable y by some nonlinear function
y = g(x), and computes the mean ȳ and covariance Pyy using
a (small) set of deterministically selected weighted samples,
called sigma points [25]. X i denotes the ith sigma point from
x and wi denotes its weight. The sigma points are always
chosen such that the mean and covariance match those of the
original distribution, x̄ and Pxx. Each sigma point is passed
through g to obtain new sigma points Y , i.e.,

Yi = g(X i)

with mean and covariance calculated as

ȳ =
∑
i

wiYi

Pyy =
∑
i

wi(Yi − ȳ)(Yi − ȳ)T .

We use here the symmetric unscented transform, in which
2nx + 1 sigma points are selected symmetrically about the
mean in the following way:

wi =

κ

(nx + κ)
, i = 0

1

2(nx + κ)
, i = 1, . . . , 2nx

X i =

x̄, i = 0

x̄+
(√

(nx+κ)Pxx

)i
,i = 1, . . . , nx

x̄−
(√

(nx+κ)Pxx

)i
,i = nx+1, . . . , 2nx,

where
(√

(nx + κ)Pxx

)i
refers to the ith column of the

matrix square root of (nx + κ)Pxx [26]. The number κ is

a free parameter that can be used to tune the higher order
moments of the distribution. Note that the sigma point weights
do not directly represent probabilities, so are not restricted to
the interval [0, 1]. If x is assumed Gaussian, then selecting
κ = 3 − nx is recommended [25]. A smaller value of κ will
bring the sigma points closer together than a larger value.

In the filter, first, ns sigma points X̂ k−1|k−1 are derived
from the current mean x̂k−1|k−1 and covariance estimates
Pk−1|k−1 using the sigma point selection algorithm of choice.
The prediction step is:

X̂
i

k|k−1 = f(X̂
i

k−1|k−1,uk−1), i = 1, . . . , ns

Ŷ
i

k|k−1 = h(X̂
i

k|k−1), i = 1, . . . , ns

x̂k|k−1 =

ns∑
i

wiX i
k|k−1

ŷk|k−1 =

ns∑
i

wiYi
k|k−1

Pk|k−1 = Q+
ns∑
i

wi(X i
k|k−1 − x̂k|k−1)(X i

k|k−1 − x̂k|k−1)T ,

where Q is the process noise covariance matrix. The update
step is:

Pyy = R +

ns∑
i

wi(Yi
k|k−1 − ŷk|k−1)(Yi

k|k−1 − ŷk|k−1)T

Pxy =

ns∑
i

wi(X i
k|k−1 − x̂k|k−1)(Yi

k|k−1 − ŷk|k−1)T

Kk = PxyP
−1
yy

x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1)

Pk|k = Pk|k−1 −KkPyyK
T
k ,

where R is the sensor noise covariance matrix.
Joint state-parameter estimation can be accomplished in the

UKF by augmenting the state vector with the unknown pa-
rameters. The corresponding diagonal elements of the process
noise matrix, Q, for the parameters θ are set to nonzero values.
In this way, the parameter estimates become time-varying and
are modified by the filter using the measured outputs. The
variance values assigned to the parameters determine both the
rate of parameter estimation convergence and the estimation
performance once convergence is achieved. Therefore, several
heuristic approaches have been developed to tune this value
online to optimize performance, e.g., [2], [27]–[29]. We adopt
the approach presented in [2], [27], in which the algorithm
modifies the variance in order to control the variance of the
parameter estimate to a user-specified range. Note that the
purpose of the algorithm is to adapt only the (artificial) process
noise terms associated with the parameters, and process noise
associated with the states and sensor noise is assumed to be
known and the associated variance values are not adjusted.

The algorithm for the adaptation of the variance vector
associated with θ, vθ, is given as Algorithm 3 (see [27]
for details), and is called at each time step. We assume that

12

Algorithm 3 vθ Adaptation
Inputs: p(xk,θk|y0:k)
State: vθ,k−1, l← 1
Outputs: vθ,k
for all j ∈ {1, 2, . . . , nθ} do

vj ← RelativeSpread(p(θk(j)|y0:k))
if vj < tj(s(j)) then

s(j)← s(j) + 1
end if
vθ,k(j)← vθ,k−1(j)

(
1−Pj(s(j))

vj − v∗j (s(j))

v∗j (s(j))

)
end for
vθ,k−1 ← vθ,k

the variance values are tuned initially based on the minimum
expected EOLs. The adaptation proceeds in stages, maintained
with the sj variable for each parameter (with j referring to
the parameter index). The relative spread is computed as vj .
If this value is below the threshold value for the the current
stage, tj(s(j)), then the stage number is increased. Then the
new variance vθ,k(j) is computed. The error between the
the actual and the desired spread value for the current stage,
vj − v∗j (s(j)), is normalized by v∗j (s(j)). This normalized
error is then multiplied by the proportional gain term for
the current stage, Pj(s(j)), and the corresponding variance
vθ,k−1(j) is increased or decreased by that percentage to
compute the new variance value vθ,k(j). Tuning of the al-
gorithm parameters is necessary, but we have found that the
number of stages Sj = 2 with v∗j = [50, 10], tj = [60, 0],
and Pj = [1× 10−3, 1× 10−4] for all j works well in many
cases. In the first stage, the variance is kept large to allow for
convergence, and in the second stage, once convergence has
begun, the variance is kept small for accurate tracking.

VII. DISTRIBUTED PREDICTION

Each local prediction module takes as input local state-
parameter estimates formed from the local estimators, as
discussed in Section V. Given the mean and covariance
information, we represent the distribution with a set of sigma
points derived using the unscented transform. Then, as in [30],
each sigma point is simulated forward to EOL, and we recover
the statistics of the EOL distribution given by the sigma points.

The prediction algorithm is executed for each submodel,
deriving local EOL predictions using its local threshold func-
tion. The pseudocode for the prediction procedure is given as
Algorithm 4 [3]. For a given submodelMi

P , each sigma point
j is propagated forward until TEOL(x

i(j)
k ,θ

i(j)
k , ûik) evaluates

to 1. The algorithm hypothesizes future inputs of the system,
ûk. In this work, we consider only the situation where a
single future input trajectory is known, because the pump
in our application undergoes a strict pumping schedule [31].
Approaches to handle the case with uncertain future inputs are
described in [32], [33].

As discussed in Section V, the global EOL prediction
is taken as the minimum of the local EOL predictions. To
compute this, we sample from each local EOL distribution
and take the minimum of the local samples. This is repeated

Algorithm 4 EOL Prediction

Inputs: {(xi(j)kP
,θ
i(j)
kP

), w
i(j)
kP
}Nj=1

Outputs: {EOL
i(j)
kP

, w
i(j)
kP
}Nj=1

for j = 1 to N do
k ← kP
x
i(j)
k ← x

i(j)
kP

θ
i(j)
k ← θ

i(j)
kP

Predict ûik
while T iEOL(x

i(j)
k ,θ

i(j)
k , ûik) = 0 do

Predict ûik
θ
i(j)
k+1 ∼ p(θik+1|θ

i(j)
k)

x
i(j)
k+1 ∼ p(xik+1|x

i(j)
k ,θ

i(j)
k , ûik)

k ← k + 1
x
i(j)
k ← x

i(j)
k+1

θ
i(j)
k ← θ

i(j)
k+1

end while
EOL

i(j)
kP
← k

end for

many times and the statistics of the global EOL distribution
are computed.

Note that prediction for some submodels may complete
(i.e., simulate all their sigma points to EOL) before others,
because the damage progression is faster in one submodel
than in another. To avoid the distributed approach simulating
beyond the point where a centralized approach would stop,
we may run the local predictors simultaneously, and terminate
all predictors whenever the first completes. The unfinished
samples in the predictors can be ignored, since when taking
the minimum, they would not be selected anyways. Prediction
on some submodels may also be avoided altogether if the wear
rate is clearly dominated by the wear rates on other submodels.

VIII. RESULTS

We performed a number of simulation-based experiments
to analyze the performance of the distributed prognostics
approach compared to a centralized prognostics approach
for the pump case study. For the distributed approach, we
implemented the architecture given in Fig. 7. In this section,
we first provide a demonstration of the approach, followed by
a summary of a large number of experiments to compare the
two approaches. We then argue for the improved scalabilty of
the distributed approach and provide experimental results in
support of it.

A. Demonstration of Approach

Here, we use percent root mean square error (PRMSE) as a
measure of estimation accuracy, relative accuracy (RA) [34] as
a measure of prediction accuracy (computed as the difference
in true and predicted RUL over the true RUL, and expressed
as a percentage), and RSD as a measure of spread. Each
prediction metric is averaged over multiple prediction points
(one every hour of usage) for a single scenario (see [2], [34]
for the mathematical definitions of the metrics used here).

As an example scenario, consider the case where wb0 = 1×
10−3, wt = 2×10−11, and wr = 2.5×10−11 with the nominal
noise level. Estimation results for the wear parameters for the

13

TABLE II
CENTRALIZED ESTIMATION AND PREDICTION PERFORMANCE

n PRMSEwb0 PRMSEwt PRMSEwr RSDwb0 RSDwt RSDwr RA RSDRUL

1 3.04 1.90 3.36 9.44 9.55 9.37 96.32 6.95

10 3.79 2.28 3.97 9.84 9.49 9.56 96.07 7.16

100 4.15 2.83 4.15 11.11 9.21 10.15 95.26 7.27

1000 3.59 3.21 4.50 11.78 9.37 10.78 94.98 7.49

TABLE III
DISTRIBUTED ESTIMATION AND PREDICTION PERFORMANCE

n PRMSEwb0 PRMSEwt PRMSEwr RSDwb0 RSDwt RSDwr RA RSDRUL
1 2.98 1.85 4.10 10.39 10.49 10.30 96.21 8.12
10 3.77 2.35 5.28 10.79 10.42 10.55 95.78 7.99
100 4.28 2.88 5.69 11.81 10.14 11.02 95.32 7.75
1000 3.76 3.55 5.39 13.09 10.23 12.11 94.25 7.99

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2
x 10

−3

t (hours)

w
b
0
(s
/m

4
)

Mean(ŵb0

)
Min(ŵb0

) and Max(ŵb0
)

0 2 4 6 8 10 12 14 16 18 20 22 24
0

2

4
x 10

−11

t (hours)

w
t
(s
)

Mean(ŵt)
Min(ŵt) and Max(ŵt)

0 2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

x 10
−11

t (hours)

w
r
(s
)

Mean(ŵr)
Min(ŵr) and Max(ŵr)

Fig. 8. Centralized estimation results for wb0 = 1×10−3, wt = 2×10−11,
and wr = 2.5× 10−11.

centralized and distributed approaches are shown in Figs. 8
and 9, respectively. Note that the minimum and maximum
values shown are those from the sigma points. Clearly, both
approaches do very well, and there is no discernible difference
between the two approaches. Due to the variance control
algorithm, both approaches converge very quickly to the true
values of the wear parameters, and remain close to the true
values with small variance. In both cases, PRMSE for all
unknown parameters is within 2–3%, with RSD of the wear
parameters within 9–10% for the centralized case and within
10–11% for the distributed case.

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2
x 10

−3

t (hours)

w
b
0
(s
/m

4
)

Mean(ŵb0

)
Min(ŵb0

) and Max(ŵb0
)

0 2 4 6 8 10 12 14 16 18 20 22 24
0

2

4
x 10

−11

t (hours)

w
t
(s
)

Mean(ŵb0

)
Min(ŵt) and Max(ŵb0

)

0 2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

x 10
−11

t (hours)

w
r
(s
)

Mean(ŵb0

)
Min(ŵr) and Max(ŵb0

)

Fig. 9. Distributed estimation results for wb0 = 1×10−3, wt = 2×10−11,
and wr = 2.5× 10−11.

For the same scenario, prediction results are given in
Figs. 10 and 11 for the centralized and distributed approaches,
respectively, as α-λ plots. The α-λ metric requires that at a
given prediction point (λ), β of the predicted RUL distribution
must come within α of the true RUL [34]. Here, we use
α = 0.1 and β = 0.5 for all λ, i.e., we require that at
each prediction point, 50% of the distribution lies within
10% of ground truth. Both approaches pass the test at all
prediction points, so either approach will obtain the desired
performance. Figs. 10 and 11 show the result of the test and
the percentage of the distribution lying within the α-bounds.

14

90.6%

True

75.5%

True

70.4%

True

73.6%

True

93.6%

True

83.7%

True

77.9%

True

100.0%

True

t (hours)

R
U
L

(h
o
u
rs
)

0 5 10 15 20 25
0

5

10

15

20

25

30

35
RUL∗
[(1− α)RUL∗, (1 + α)RUL∗]

Fig. 10. Centralized prognosis results for wb0 = 1×10−3, wt = 2×10−11,
and wr = 2.5× 10−11 with α = 0.1 and β = 0.5.

87.4%

True

67.8%

True

77.5%

True

80.8%

True

60.5%

True

67.1%

True

78.4%

True

100.0%

True

t (hours)

R
U
L

(h
ou

rs
)

0 5 10 15 20 25
0

5

10

15

20

25

30

35
RUL∗
[(1− α)RUL∗, (1 + α)RUL∗]

Fig. 11. Distributed prognosis results for wb0 = 1×10−3, wt = 2×10−11,
and wr = 2.5× 10−11 with α = 0.1 and β = 0.5.

The corresponding RA is 96.90% for the centralized case and
96.54% for the distributed case, with the RSD of the RUL at
7.44% for the centralized case and 6.85% for the distributed
case.

If T ∗o is not measured (see Section V), both the estimation
and prediction performance are virtually the same. PRMSE is
within 2–3%, being only slightly higher (less than 1%) for
the distributed case. RSD of the wear parameters is again
within 9–10% for the centralized case and within 10–11% for
the distributed case. Prediction results are also similar, with
RA being 96.79% for the centralized case and 96.82% for
the distributed case, with RSD of the RUL being 7.15% for
the centralized case and 6.95% for the distributed case. Since
dropping the T ∗o measurement does not significantly affect
observability of the system, both centralized and distributed

prognostics still perform well.

B. Prognostics Performance

In a single experiment, combinations of wear parameter
values were selected randomly within the following ranges:
[1×10−3, 3×10−3] for wb0 , in [1×10−11, 3×10−11] for wt,
and in [2× 10−11, 5× 10−11] for wr, such that the maximum
wear rates corresponded to a minimum EOL of 20 hours. For
the variance control algorithm, with relative standard deviation
(RSD) as the measure of spread, we used Sj = 2 with
v∗j = [50, 10], tj = [60, 0], and Pj = [1 × 10−3, 1 × 10−4]
for all j, in all experiments. Since the local estimators use
measured values as inputs, performance will degrade as sensor
noise is increased, so we varied the sensor noise variance by
factors of 1, 10, 100, and 1000, to explore this situation. We
performed 30 experiments for each sensor noise level for both
the centralized and distributed approaches. We considered the
case where the future input of the pump is known, in order to
limit the uncertainty to only that involved in the noise terms
and that introduced by the filtering algorithms. The pump
operates at two different RPM values, changing every half
hour, as shown in Fig. 2. For the pump model, we used a
first-order discrete-time approximation using a step size of 1 s.

The averaged estimation and prediction performance results
are shown in Table II for the centralized approach, and
Table III for the distributed approach. The column labeled n
lists the sensor noise variance multipliers. Note that all metrics
are expressed as percentages.

We expect that in going from a centralized implementation
to a distributed implementation there will be some loss of
performance, due to the information lost in the decomposition,
but that this performance loss will not be significant. As
shown in Tables II and III, both the centralized and distributed
approaches obtain high accuracy and precision, with RA over
94% and RSDRUL under 9%, and the performance of the
distributed approach is virtually the same as the centralized
approach. The distributed approach yields only small decreases
in prediction accuracy (less than 1%) and small increases in
spread (less than 1.2%). The decrease in performance of the
distributed approach is expected, since the local estimators use
noisy measurement values as inputs. Consequently, estimation
performance decreases slightly and this translates to decreases
in prediction performance. The distributed approach also must
hypothesize the future value of ω, which is not completely
accurate, and therefore also contributing to the slight decrease
in performance.

As expected, both approaches perform worse as sensor
noise increases, but with only small decreases in performance.
The centralized approach loses 1.34% for RA, whereas the
distributed approach loses 1.96% for RA. The decrease in
performance from one noise level to the next higher level is
larger with the distributed approach since the local estimation
approach is more sensitive to noise.

As shown in this specific example and comparing Tables II
and III, for the pump model, the distributed approach achieves
prognostics performance virtually identical to the centralized
approach. Although these results are only empirical, they

15

should extend to other systems as well. For distributed esti-
mation, the covariance information lost due to the decoupling
is, in this case (and likely many others), negligible, and is not
needed for prediction, so only a small loss in performance
is expected, if any. For distributed prediction, the quality
of the predictions will depend on the estimation results, so
errors in estimation will propagate into prediction. Within the
distributed prediction itself though, there is no information loss
due to the decomposition.

C. Computational Efficiency

The distributed approach will always yield more efficient
local estimators and predictors compared to the centralized ap-
proach, as long as some amount of decomposition is achieved,
because each local submodel will be smaller than the global
model, and the complexity of the estimation and prediction
algorithms is a function of the model size. So, if each
local estimator (predictor) is implemented on an independent
processor, the distributed approach will be faster compared to
the centralized approach on a single processor.

In particular, for the UKF, the computational complexity
is polynomial in the state-parameter dimension (O(n3) for
dimension n [35]). Using the symmetric unscented transform,
there are 2n+ 1 sigma points for a state-parameter vector of
size n. For the centralized approach, the state-parameter vector
is of size 11, yielding 23 sigma points. For the distributed
approach, the state-parameter vectors are of size 3, 3, 3, and
1, yielding 7, 7, 7, and 3 sigma points, respectively. In the
implementation for the pump experiments, on average, we find
that a single local estimator operates around 14% faster.2

For the prediction algorithm, using the sigma points as
the sample set, each local predictor has less samples than
the global predictor, so, all things being equal, will be faster
than the centralized predictor. Overall computational efficiency
depends also on the spread of the samples, i.e., a sample with
a wear rate value closer to zero will take longer to simulate to
EOL than one with a larger wear rate value, given the same
inputs [30]. If the distributed approach can achieve the same
spread, then, it should be faster than the centralized approach
since less samples are simulated forward. For the pump, the
centralized approach uses the 24 sigma points obtained by the
global estimator. The distributed approach has two submodels
with state-parameter vectors of size 3 and 7, yielding 7 and
15 sigma points. The centralized and distributed approaches
do achieve approximately the same amount of spread (e.g.,
compare Figs. 8 and 9), and we find that the distributed
approach is, on average, about 15% faster.

D. Scalability

As the size of the system increases, we expect that the
computational cost of the distributed approach grows more

2We find the performance gain of the distributed approach smaller than
expected due to both the overhead associated with the UKF implementation,
and the fact that the implementation platform, MATLAB R©, is very efficient at
matrix multiplications; for relatively small matrices the performance difference
is quite small.

0 1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of Pumps

C
om

pu
ta

tio
n

T
im

e
Pe

r
St

ep
 (

s)

Centralized
Distributed

(a) Estimation.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

x 10
−3

Number of Pumps

C
om

pu
ta

tio
n

T
im

e
P

er
 S

te
p

(s
)

Centralized
Distributed

(b) Prediction.

Fig. 12. Scalability of centralized and distributed approaches.

slowly than that of the centralized approach, i.e., the dis-
tributed approach is more scalable. For the case of UKF
estimation, assume we have the least possible decomposition,
where for global model dimension n the largest local submodel
has dimension n − 1. Then the complexities are O(n3) and
O((n − 1)3), and if the size of the system increases by
one state, the complexities are O((n + 1)3) and O((n)3),
and the complexity of the centralized approach grows by
a larger margin than the distributed approach, therefore the
distributed approach is more scalable. The argument is similar
for distributed prediction.

The improved scalability is confirmed experimentally also.
As a large-scale system we adopted a system consisting of
n pumps. In this case, the decomposition results remain the
same, where each pump results in 4 submodels for estimation
and 2 submodels for prediction. For example, for a 5-pump
system, there are 20 submodels for estimation and 10 for
prediction. The scalability results for estimation are shown
in Fig. 12a. As the size of the system increases, the amount
of computation time required per step increases exponentially
for the centralized approach. The distributed approach, on the
other hand, stays constant, because even though there are
more submodels, they are all operating in parallel. Even if
the distributed approach was implemented sequentially on a
single processor, the total amount of computation would grow
only linearly, since each new pump adds 4 new submodels of
fixed size. The scalability results for prediction are shown in
Fig. 12b, and the results are similar to the case for estimation.

16

IX. RELATED WORK

Model-based prognostics approaches have been developed
previously and applied to other components and fault modes,
such as batteries [4], [36], fatigue cracks [37], [38], and
automotive suspension systems [5]. Most model-based ap-
proaches are based on using filters for state estimation. Kalman
filters have been used for prognostics of electrolytic capacitors
in [39]. A model-based prognostics methodology is developed
in [5] using an interacting multiple model filter for state-
parameter estimation and prediction. An application of the
approach of [5] to a centrifugal pump is developed in [23],
but considers only a single degradation mode. Particle filters
have been the most popular and have been used in [4], [37],
[38], [40], [41], among others.

Some distributed prognostics approaches have also been
explored. A distributed prognostics approach based on particle
filters is developed in [15], and one based on Gaussian
process regression in [16]. In contrast to our approach, these
approaches still solve the global problem, and distribute only
the computation. We propose a fundamentally different and
novel distributed architecture, in which the global problem
is decomposed into subproblems that can be solved inde-
pendently and computation trivially distributed. This type of
architecture is favorable, because there may be parts of the
global problem that are not relevant to prognostics, and do not
need to be solved (e.g., estimation of ω in the pump model). In
a global approach where only the computation is distributed,
these parts of the problem are still being solved. The local
subproblems themselves can then be solved in a distributed
fashion using an approach such as that described in [15].

The idea of using model decomposition to distribute state
and parameter estimation is not new. Subspace methods [42],
[43] have been used for solving identification problems in
large dimensional systems by employing QR-factorization
and singular-value decomposition [44]. These methods have
been successfully used for linear systems, but face robust-
ness problems when applied to nonlinear systems. Moreover,
methods to automatically derive the decomposition directly
from the system model have not been proposed. Regarding
structural model decomposition, in [9], Williams and Millar
propose an approach for decomposing a system model into
smaller hierarchically organized subsystems, called dissents,
applied to learning problems. Similar techniques, like Analyti-
cal Redundancy Relations (ARRs) [45] and Possible Conflicts
(PCs) [10], both used for diagnosis, are also based on the
idea of model decomposition. Dissents, ARRs and PCs are
all conceptually equivalent [10]. PCs have been previously
applied to generate a more robust and computationally simpler
parameter estimation approach for fault identification [18].
Simulation results in that case showed an improvement in
estimation accuracy while having a faster convergence to true
solutions. Similar work was proposed in [46] using a dynamic
Bayesian network (DBN) modeling framework, in which an
automatic approach for model decomposition into submodels
based on structural observability was developed for efficient
state estimation and fault identification. We instead use a
more general model decomposition framework, distributing

the estimation problem in a way similar to these previous
approaches, but distributing also the prediction problem in a
novel way.

X. CONCLUSIONS

In this paper, we developed a novel distributed model-based
prognostics approach based on structural model decomposi-
tion. The global model of a system is decomposed into a set of
local submodels, from which independent local estimation and
prediction problems are posed to solve the global prognostics
problem in a distributed fashion that scales well. We applied a
general model decomposition framework to generate minimal
submodels for estimation and prediction. The local estimators
compute local state-parameter estimates that define the system
health state, and this information is used as an input to the local
predictors, which compute EOL and RUL predictions for their
submodels. The system EOL prediction can then be formed
as the minimum of the local EOL predictions.

A centrifugal pump model was used for a simulation-
based case study, demonstrating that, for all practical purposes,
the distributed scheme has identical prognostics performance
to the centralized scheme. Minor decreases in performance
are observed, as expected, since the distributed scheme de-
composes the models by using noisy sensor values as local
submodel inputs, however, the impact was not significant and
did not increase significantly as sensor noise increased. The
distributed approach also offers improvements in computa-
tional efficiency and scalability in both the estimation and
prediction steps.

In future work, we will apply this framework to system-level
prognosis of large-scale systems. Further, the amount of model
decomposition that can be achieved, for the estimation prob-
lem, is dependent on the number of sensors and where they
are placed, so algorithms are needed for optimal placement of
sensors to achieve the best model decompositions, and, hence,
the best decomposition of the prognostics problem.

REFERENCES

[1] M. Orchard and G. Vachtsevanos, “A particle filtering approach for on-
line fault diagnosis and failure prognosis,” Transactions of the Institute
of Measurement and Control, no. 3-4, pp. 221–246, June 2009.

[2] M. J. Daigle and K. Goebel, “Model-based prognostics with concurrent
damage progression processes,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, to appear.

[3] M. Daigle and K. Goebel, “Model-based prognostics under limited
sensing,” in 2010 IEEE Aerospace Conference, Mar. 2010.

[4] B. Saha and K. Goebel, “Modeling Li-ion battery capacity depletion in
a particle filtering framework,” in Proceedings of the Annual Conference
of the Prognostics and Health Management Society 2009, Sept. 2009.

[5] J. Luo, K. R. Pattipati, L. Qiao, and S. Chigusa, “Model-based prognostic
techniques applied to a suspension system,” IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 38,
no. 5, pp. 1156 –1168, Sept. 2008.

[6] P. Lall, R. Lowe, and K. Goebel, “Extended kalman filter models and
resistance spectroscopy for prognostication and health monitoring of
lead-free electronics under vibration,” IEEE Transactions on Reliability,
vol. 61, no. 4, pp. 858–871, Dec. 2012.

[7] P. Baraldi, F. Mangili, and E. Zio, “A kalman filter-based ensemble ap-
proach with application to turbine creep prognostics,” IEEE Transactions
onReliability, vol. 61, no. 4, pp. 966–977, Dec. 2012.

[8] H. Thompson, “Parallel processing architectures for aerospace applica-
tions,” Control Engineering Practice, vol. 2, no. 3, pp. 509–520, 1994.

17

[9] B. Williams and B. Millar, “Decompositional model-based learning and
its analogy to diagnosis,” in Proc. of the Fifteenth National Conference
on Artificial Intelligence, 1998, pp. 197–204.

[10] B. Pulido and C. Alonso-González, “Possible conflicts: a compilation
technique for consistency-based diagnosis,” IEEE Trans. on Systems,
Man, and Cybernetics, Part B, Special Issue on Diagnosis of Complex
Systems, vol. 34, no. 5, pp. 2192–2206, 2004.

[11] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and
Fault-Tolerant Control. Springer, 2006.

[12] L. Travé-Massuyès, T. Escobet, and X. Olive, “Diagnosability analysis
based on component supported analytical redundancy relations,” IEEE
Trans. on Systems, Man, and Cybernetics, Part A, vol. 36, no. 6, 2006.

[13] M. Krysander, J. Åslund, and M. Nyberg, “An efficient algorithm for
finding minimal over-constrained sub-systems for model-based diagno-
sis,” IEEE Trans. on Systems, Man, and Cybernetics, Part A, vol. 38,
no. 1, 2008.

[14] I. Roychoudhury, M. Daigle, A. Bregon, and B. Pulido, “A structural
model decomposition framework for systems health management,” in
Proceedings of the 2013 IEEE Aerospace Conference, Mar. 2013.

[15] B. Saha, S. Saha, and K. Goebel, “A distributed prognostic health
management architecture,” in Proceedings of the 2009 Conference of
the Society for Machinery Failure Prevention Technology, 2009.

[16] S. Saha, B. Saha, A. Saxena, and K. Goebel, “Distributed prognostic
health management with Gaussian process regression,” in Aerospace
Conference, 2010 IEEE, Mar. 2010.

[17] M. Daigle, A. Bregon, and I. Roychoudhury, “Distributed damage
estimation for prognostics based on structural model decomposition,”
in Proceedings of the Annual Conference of the Prognostics and Health
Management Society 2011, Sept. 2011, pp. 198–208.

[18] A. Bregon, G. Biswas, and B. Pulido, “A decomposition method for
nonlinear parameter estimation in TRANSCEND,” IEEE Trans. on
Systems, Man, and Cybernetics, Part A: Systems and Humans, vol. 42,
no. 3, pp. 751–763, May 2012.

[19] S. E. Lyshevski, Electromechanical Systems, Electric Machines, and
Applied Mechatronics. CRC, 1999.

[20] A. Wolfram, D. Fussel, T. Brune, and R. Isermann, “Component-based
multi-model approach for fault detection and diagnosisof a centrifugal
pump,” in Proceedings of the 2001 American Control Conference, vol. 6,
2001, pp. 4443–4448.

[21] C. Kallesøe, “Fault detection and isolation in centrifugal pumps,” Ph.D.
dissertation, Aalborg University, 2005.

[22] G. Biswas and S. Mahadevan, “A hierarchical model-based approach
to systems health management,” in Proc. of the 2007 IEEE Aerospace
Conference, Mar. 2007.

[23] F. Tu, S. Ghoshal, J. Luo, G. Biswas, S. Mahadevan, L. Jaw, and
K. Navarra, “PHM integration with maintenance and inventory man-
agement systems,” in Proc. of the 2007 IEEE Aerospace Conference,
Mar. 2007.

[24] I. M. Hutchings, Tribology: friction and wear of engineering materials.
CRC Press, 1992.

[25] S. J. Julier and J. K. Uhlmann, “A new extension of the Kalman filter
to nonlinear systems,” in Proc. of the 11th Intl. Symp. on Aerospace/
Defense Sensing, Simulation and Controls, 1997, pp. 182–193.

[26] ——, “Unscented filtering and nonlinear estimation,” Proceedings of the
IEEE, vol. 92, no. 3, pp. 401–422, Mar. 2004.

[27] M. Daigle, B. Saha, and K. Goebel, “A comparison of filter-based
approaches for model-based prognostics,” in Proceedings of the 2012
IEEE Aerospace Conference, Mar. 2012.

[28] J. Liu and M. West, “Combined parameter and state estimation in
simulation-based filtering,” Sequential Monte Carlo Methods in Practice,
pp. 197–223, 2001.

[29] M. Orchard, F. Tobar, and G. Vachtsevanos, “Outer feedback correction
loops in particle filtering-based prognostic algorithms: Statistical per-
formance comparison,” Studies in Informatics and Control, no. 4, pp.
295–304, Dec. 2009.

[30] M. Daigle and K. Goebel, “Improving computational efficiency of
prediction in model-based prognostics using the unscented transform,”
in Proc. of the Annual Conference of the Prognostics and Health
Management Society 2010, Oct. 2010.

[31] C. Goodrich, S. Narasimhan, M. Daigle, W. Hatfield, R. Johnson,
and B. Brown, “Applying model-based diagnosis to a rapid propellant
loading system,” in Proceedings of the 20th International Workshop on
Principles of Diagnosis, June 2009, pp. 147–154.

[32] M. Daigle, A. Saxena, and K. Goebel, “An efficient deterministic
approach to model-based prediction uncertainty estimation,” in Annual
Conference of the Prognostics and Health Management Society 2012,
Sept. 2012, pp. 326–335.

[33] S. Sankararaman, M. Daigle, A. Saxena, and K. Goebel, “Analytical al-
gorithms to quantify the uncertainty in remaining useful life prediction,”
in Proceedings of the 2013 IEEE Aerospace Conference, Mar. 2013.

[34] A. Saxena, J. Celaya, B. Saha, S. Saha, and K. Goebel, “Metrics for
offline evaluation of prognostic performance,” International Journal of
Prognostics and Health Management, vol. 1, no. 1, 2010.

[35] F. Daum, “Nonlinear filters: beyond the Kalman filter,” IEEE Aerospace
and Electronic Systems Magazine, vol. 20, no. 8, pp. 57–69, 2005.

[36] M. Abbas, A. A. Ferri, M. E. Orchard, and G. J. Vachtsevanos, “An
intelligent diagnostic/prognostic framework for automotive electrical
systems,” in 2007 IEEE Intelligent Vehicles Symp., 2007, pp. 352–357.

[37] M. E. Orchard, “A particle filtering-based framework for on-line fault
diagnosis and failure prognosis,” Ph.D. dissertation, Georgia Institute of
Technology, 2007.

[38] E. Zio and G. Peloni, “Particle filtering prognostic estimation of the
remaining useful life of nonlinear components,” Reliability Engineering
& System Safety, vol. 96, no. 3, pp. 403–409, 2011.

[39] J. R. Celaya, C. Kulkarni, G. Biswas, S. Saha, and K. Goebel, “A
model-based prognostics methodology for electrolytic capacitors based
on electrical overstress accelerated aging,” in Proceedings of the Annual
Conference of the Prognostics and Health Management Society 2011,
Sept. 2011, pp. 31–39.

[40] N. Bolander, H. Qiu, N. Eklund, E. Hindle, and T. Rosenfeld, “Physics-
based remaining useful life prediction for aircraft engine bearing prog-
nosis,” in Proceedings of the Annual Conference of the Prognostics and
Health Management Society 2010, Oct. 2010.

[41] M. Daigle and K. Goebel, “A model-based prognostics approach applied
to pneumatic valves,” International Journal of Prognostics and Health
Management, vol. 2, no. 2, Aug. 2011.

[42] T. Katayama, Subspace Methods for System Identification. Springer,
2005.

[43] M. Viberg, “Subspace-based state-space system identification,” Circuits,
Systems, and Signal Processing, vol. 21, no. 1, pp. 23–37, 2002.

[44] P. Overschee and B. D. Moor, Subspace Identification for Linear
Systems. Boston, MA, USA: Kluwer Academic Publishers, 1996.

[45] M. Staroswiecki and P. Declerck, “Analytical redundancy in nonlinear
interconnected systems by means of structural analysis,” in IFAC Symp.
on Advanced Information Processing in Automatic Control, July 1989.

[46] I. Roychoudhury, G. Biswas, and X. Koutsoukos, “Factoring dynamic
Bayesian networks based on structural observability,” in Proc. of the 48th
IEEE Conference on Decision and Control, Dec. 2009, pp. 244–250.

Matthew J. Daigle (S’07–M’08) received the B.S. degree in Computer
Science and Computer and Systems Engineering from Rensselaer Polytechnic
Institute, Troy, NY, in 2004, and the M.S. and Ph.D. degrees in Computer
Science from Vanderbilt University, Nashville, TN, in 2006 and 2008,
respectively.

From September 2004 to May 2008, he was a Graduate Research Assistant
with the Institute for Software Integrated Systems and Department of Elec-
trical Engineering and Computer Science, Vanderbilt University, Nashville,
TN. From June 2008 to December 2011, he was an Associate Scientist with
the University of California, Santa Cruz, at NASA Ames Research Center.
Since January 2012, he has been with NASA Ames Research Center as a
Research Computer Scientist. His current research interests include physics-
based modeling, model-based diagnosis and prognosis, simulation, and hybrid
systems.

Dr. Daigle is a recipient of two Staff Recognition and Development Awards
from the University of California, Santa Cruz, a best paper award at the
Annual Conference of the Prognostics and Health Management Society, an
Ames Contractor Council Excellence Award, and a NASA Ames Research
Center Group Achievement Award. He is a member of the Prognostics and
Health Management Society and the IEEE.

Anibal Bregon (S’08-M’10) received his B.Sc., M.Sc., and Ph.D. degrees
in Computer Science from the University of Valladolid, Valladolid, Spain, in
2005, 2007, and 2010, respectively.

18

From September 2005 to June 2010, he was a Graduate Research Assistant
with the Intelligent Systems Group, at the Department of Computer Science,
University of Valladolid, Spain. Dr. Bregon has been a visiting researcher with
the Institute for Software Integrated Systems, Vanderbilt University, Nashville,
TN, USA, with the Department of Electrical Engineering, Linköping Univer-
sity, Linköping, Sweden, and with the Diagnostics and Prognostics Group,
NASA Ames Research Center, Moffett Field, CA, USA. Currently he is
Assistant Professor and Research Assistant with the Department of Computer
Science, University of Valladolid.

Dr. Bregon is a member of the Prognostics and Health Management Society
and the IEEE. His current research interests include model-based reasoning
for diagnosis, prognostics, health-management, and distributed diagnosis and
prognostics of complex physical systems.

Indranil Roychoudhury (S’07–M’08) received the B.E. (Hons.) degree in
Electrical and Electronics Engineering from Birla Institute of Technology and
Science, Pilani, Rajasthan, India in 2004, and the M.S. and Ph.D. degrees in
Computer Science from Vanderbilt University, Nashville, Tennessee, USA, in
2006 and 2009, respectively.

Since August 2009, he has been with Stinger Ghaffarian Technologies, at
NASA Ames Research Center as a Computer Scientist. His research interests
include hybrid systems modeling, model-based diagnostics and prognostics,
distributed diagnostics and prognostics, and Bayesian diagnostics of complex
physical systems.

Dr. Roychoudhury is the recipient of the ISRDS Team Recognition Award
from Stinger Ghaffarian Technologies and a best paper award at the Annual
Conference of the Prognostics and Health Management Society. He is a
member of the Prognostics and Health Management Society and the IEEE.

