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Abstract— Multi-robot systems are being increasingly used for
a variety of tasks in manufacturing, surveillance, and space
exploration. These systems can degrade or develop faults during
operation, and, therefore, require online diagnosis algorithms
to ensure safe operation. Centralized approaches to online di-
agnosis of robot formations do not scale well for two primary
reasons: (i) the computational complexity of the algorithm grows
significantly with the number of robots, and (ii) the individual
robots must communicate a large number of measurements to
a central diagnoser. To overcome these problems, we present
a distributed, model-based, qualitative fault diagnosis approach
for formations of mobile robots. The approach is based on a
bond graph modeling framework that can deal with multiple
sensor types and isolate process, sensor, and actuator faults.
The diagnosis scheme employs relative measurement orderings
to discriminate among faults by exploiting the temporal order
of measurement deviations. This increases the discriminatory
power of the measurement set and produces a more efficient fault
isolation algorithm. We describe a distributed diagnoser design
algorithm applied to robot formations. Experimental results
demonstrate the improvement in both the discriminatory power
of the measurements produced by the relative measurement
orderings, and the computational efficiency achieved by the
distributed diagnosis approach.

Index Terms— Model-based diagnosis, mobile robots, multi-
robot systems

I. INTRODUCTION

A
UTONOMOUS multi-robot teams can perform a wide

range of collaborative tasks in manufacturing, surveil-

lance, and space exploration. In many cases, the execution of

the task requires formation control [1]–[4], and the success of

the overall operation depends on each robot operating in an

error-free manner. Faults in one robot can propagate to other

robots over communication links, and this can cause problems

in maintaining the formation required to execute the desired

tasks (e.g., collaboratively moving a load). Degradations and

faults must be detected and isolated early to allow for reconfig-

uration and continued operation [5], and this can be achieved

only if diagnostic mechanisms are incorporated into multi-

robot systems. However, the diagnosis of robot formations

is a difficult problem. A global, centralized model is usually

needed to capture the interactions that govern the propagation

of fault effects between robots, but centralized approaches
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have many weaknesses. Specifically, these approaches (i) cre-

ate a single point of failure, (ii) do not scale well as formation

size increases, (iii) do not exploit the computational resources

available on each robot, and (iv) incur large communication

overhead.

In this paper, we present a distributed, qualitative fault

diagnosis approach for mobile robot formations. Our approach

is based on an extended bond graph model [6], which provides

a comprehensive framework for modeling the physical com-

ponents, sensors, and actuators, as well as the communication

processes among the robots. The methodology, a generaliza-

tion of our initial work on two coupled robots presented in [7],

is based on the TRANSCEND framework [8], [9] that employs

a qualitative approach to fault isolation in dynamic systems.

In TRANSCEND, analysis of fault transient behavior is based

on fault signatures, which are predicted time-derivative effects

of faults on measurements derived from the system model.

Faults are isolated by tracking dynamic system behavior and

comparing the symbolic magnitude and slope of measurements

against predicted fault signatures when faults are detected.

We use a qualitative methodology since traditional methods,

such as parity relations [10], typically do not apply to mul-

tiplicative faults, do not easily extend to nonlinear systems,

and are suitable for centralized diagnosis schemes. Discrete-

event approaches [11] are hard to apply because they model

event-based and not continuous dynamics. Parametric fault

effects are difficult to represent as a fixed sequence of discrete

changes in measurements. Further, the inability to analyze fault

transients may result in a loss of diagnosability, especially for

capacity- and inertia-related faults.

Interactions between the robots cause fault effects to propa-

gate across robot boundaries, and, therefore, require additional

discriminatory power to isolate all the faults of interest. We

solve this problem by introducing the concept of relative

measurement orderings [12], which is based on the intuition

that faults cause deviations in some measurements before

others. Relative measurement orderings use the predicted

temporal order of measurement deviations to increase the

discriminatory power of a set of measurements. A formal

diagnosability analysis for single, persistent faults in robot

formations shows that a combination of fault signatures and

relative measurement orderings increases the discriminatory

power of the measurements and facilitates more efficient

diagnoses.

Our approach is applicable to rigid formations of mobile

robots. In rigid formations there is a strong coupling between

the dynamics of the robot behaviors, which is exploited by our

algorithm to improve the discriminatory power of the measure-
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ments and the efficiency of the diagnosers. The approach may

not offer advantages for collaborative multi-robot applications

that do not exhibit coupling between the dynamic behavior of

individual robots. Specifically, for applications where faults

do not propagate between the mobile robots, our method

can be still applied but will naturally result in independent

diagnosers for each robot. In addition, our approach assumes

persistent single faults with an abrupt profile. The single fault

assumption is reasonable for many safety-critical engineering

systems since the probability of multiple faults occurring

simultaneously is very small [10], [13]. Although persistent

and abrupt faults may be restrictive, the abrupt fault profile is

a good approximation for many practical faults in sensors and

actuators.

Other commonly occurring fault profiles include incipient

faults that describe slow degradations in actuator performance

and sensor drifts. Fault diagnosis of incipient faults has been

studied in [14]. Preliminary work on extending the TRAN-

SCEND approach to incipient fault diagnosis is presented in

[15]. Further, diagnosis of multiple faults in TRANSCEND is

presented in [16]. Incorporating such approaches for diagnosis

of formations of mobile robots is an interesting research

problem but it is beyond the scope of this paper. Faults

can also be intermittent as opposed to persistent, e.g. when

wheel slippage occurs. It should be noted that even if such

diagnosis methods are available, they should be complemented

by diagnosis of single abrupt faults that are more likely,

and may have catastrophic consequences if not detected and

isolated quickly.

Distributed diagnosis algorithms that extend the basic

TRANSCEND scheme are presented in [17]. This paper extends

the distributed algorithms to incorporate relative measurement

orderings, and this enables each robot to individually deter-

mine a globally correct local diagnosis with a small set of

measurements. Based on this extended approach, a distributed

diagnosis scheme is designed and applied to formations of

robots with a local diagnoser on each robot. In contrast to

a centralized diagnosis approach, our solution scales well to

large formations, minimizes the communication costs associ-

ated with fault isolation, takes advantage of the computational

resources available on each robot, and avoids the need for a

centralized coordinator for the local diagnoses. Experimental

results for a system consisting of four robots in formation

demonstrate the effectiveness of this approach. The results

illustrate the advantages of the method, namely (i) scalability,

(ii) increasing the discriminatory power of the measurements,

and (iii) improving the efficiency of the distributed diagnosis

approach.

Fault diagnosis in continuous systems is a very active area

of research, and has been investigated by many researchers

(see [10], [18]–[24]). Most work in diagnosis of mobile robots

has concentrated on the single-robot case. A survey of such

methods can be found in [25]. TRANSCEND has been applied

in the single-robot case for diagnosis of actuator faults using

fault signatures derived from a simplified bond graph model

[26]. The parity relation approach has also been applied

to nonlinear single-robot systems in [27]. Particle filtering

techniques can be used for nonlinear and hybrid systems, and

have been employed in single-robot diagnosis in [28] and [29].

Fault detection in mobile robots has been addressed in [30]

by developing a technique which accounts for both kinematic

and dynamic behaviors in order to generate better residuals

in spite of parametric uncertainty. Work in [31] addressed

sensor fault detection and identification using multiple model

adaptive estimation based on a bank of Kalman filters. This

work was extended in [32] by using a neural network to detect

and identify both sensor and mechanical failures based on the

output of the filter bank.

In contrast to previous work in mobile robot diagnosis, our

approach can be applied efficiently to diagnosis of process,

sensor, and actuator faults in robot formations in a distrib-

uted fashion by employing relative measurement orderings.

In addition to easily handling multiplicative faults, our ap-

proach qualifies residuals with a richer feature set than parity

relations approaches and incorporates temporal information,

resulting in increased discriminatory power of the measure-

ments. Quantitative techniques, like particle filtering, do not

scale well with the number of possible faults and are difficult

to distribute among multiple robots with limited computational

resources. We use qualitative fault isolation instead which is

very efficient but currently is limited to abrupt faults. To deal

with parametric uncertainty, we incorporate model uncertainty

as a parameter in our fault detection scheme and apply a

statistical test on the residuals to robustly detect faults. We use

a single distributed Kalman filter as opposed to using a bank

of Kalman filters, which requires a Kalman filter for each fault

and is not efficient for distributed systems with a large number

of faults. None of the previous approaches explicitly use

any temporal measurement deviation information to resolve

ambiguities in the diagnosis results. Relative measurement

orderings distinguish among faults based on event orderings,

where the events are measurement deviations. The technique,

therefore, has some similarities to discrete-event diagnosis

approaches in [11], [33], and decentralized approaches in [34].

To our knowledge, this is the first time a distributed diagnosis

approach is developed and demonstrated for process faults in

formations of mobile robots.

Multi-agent and distributed diagnosis have been explored

previously as well. In [35], distributed systems are diagnosed

using an agent framework where some failures are diagnosed

locally, and others require coordination between the agents. In

[36], local diagnosers construct local diagnoses such that they

are consistent with global diagnoses, sacrificing diagnostic

precision for gains in computational complexity. In contrast

to these approaches, we formulate this as a design problem,

creating local diagnosers which are guaranteed to have enough

information such that no coordination needs to occur, thus

local diagnosis results correspond to global diagnosis results.

The problem of addressing coordination failures in multi-

robot teams is addressed in [37], [38]. Our approach deals

with process faults, whereas coordination failures are better

described as logical faults, which are at a higher level. Such

approaches, however, can be considered as complementary to

our work.

The paper is organized as follows. Section II presents our

modeling methodology. Section III describes the multi-robot
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diagnosis problem, and presents the computational architecture

of the diagnosis scheme. Section IV presents our solution to

the distributed fault detection problem. Section V discusses

the fault isolation approach. Section VI demonstrates the

effectiveness of the approach using experimental results for

a four-robot formation. Section VII concludes the paper.

II. MODELING

In this paper, we develop diagnostic solutions for formations

of robots that employ leader-based control schemes of the

type described in [1], [2]. The approach assumes that there

exists a single global leader, for the purposes of control, who

follows a known, planned trajectory. The remaining robots in

the formation, i.e., the followers, must maintain their positions

with respect to the global leader and/or other followers (local

leaders). Correct behavior is defined with respect to a global

objective. The global objective of the system is to maintain

the overall formation while pursuing the planned trajectory

and executing predefined tasks, e.g., collecting information or

pushing a load.

Each follower robot implements two control laws, gov-

erning its translational and rotational velocities. These laws

are functions of a robot’s local information and information

generated by its leaders. Therefore, the approach is scalable to

a large number of robots without a corresponding increase in

algorithm complexity. The formation model of [1], [2] is also

general enough to model any type of rigid formation, since

each robot’s position is defined with respect to other robots in

the formation. We adopt this formation modeling and control

approach in our work, and apply our diagnosis framework to

these robot configurations.

The control algorithms in [1], [2] assume a kinematic model

of the robot, given the translational and rotational velocities

as inputs. We develop a bond graph model of the system that

captures both the kinematic and dynamic behavior of the robot

under nominal and faulty system operation. The formation

control mechanisms are explicitly built into the bond graph

model for diagnosis, and, therefore, our approach can be used

with any control scheme that ensures the robot team is in a

rigid formation.

Each robot includes a local controller that regulates the ve-

locities of its two wheels. The sensor suite includes motor en-

coders to measure wheel velocity and a gyroscope to measure

heading. A distributed controller coordinates the formation by

determining the desired velocities for each robot based on local

and remote sensor measurements, communicated via a wireless

network. In the remainder of the section, we present the model

of the multi-robot system used for diagnosis.

A. Modeling of a Single Mobile Robot

Each robot is modeled using a bond graph. Bond graphs

define an energy-based, lumped-parameter, topological mod-

eling scheme for models of dynamic systems [6]. They are

particularly suitable for diagnosis because they incorporate

causal and temporal information required for deriving and

analyzing fault transients. Furthermore, components can be

parameterized as bond graph element parameters, which makes

Fig. 1. Bond graph model of a single robot.

it easier to link observed fault transients to parameter value

changes in the system components [8], [9].

A single robot consists of left and right wheel drive sub-

systems, a chassis, a gyroscope, and two motor encoders. The

bond graph for a single robot is shown in Fig. 1. Bonds (energy

transfer pathways) are represented as half arrows. Associated

with each bond are two variables: effort and flow, denoted by

ei and fi, respectively, where i is the bond number, and the

product ei × fi defines the rate of energy transfer through the

bond. Signals (information transfer pathways) are represented

as arrows, and each link is associated with a single variable,

as shown in Fig. 1. 1-junctions represent the common velocity

points, e.g., the rotational velocity of the left wheel, ωL, the

rotational velocity of the right wheel, ωR, the forward velocity

of the robot, v, and the rotational velocity of the robot, ω. 0-

junctions represent common force points, e.g., the forces on

the left and right sides of the robot, FL and FR. The wheel

subsystems include modulated sources of effort (MSeL and

MSeR) that model the actuator torque outputs that directly

feed the wheels, and inertial (I) elements that model wheel

mass and inertia, mw. Resistive (R) elements (with parameters

RL and RR) model energy dissipation (i.e., friction) in the

wheels. Transformers (TF) model the transformations between

linear and rotational velocities. The robot body subsystem

includes inertia components that model robot mass, Mc, and

rotational inertia, Jc. The capacitive (C) components (with

parameters KL and KR) model the mechanical stiffness of

the robot system.

Sensor models in the bond graph are derived from the

kinematic relationships between the robot velocities and the

measurements. Each robot includes a gyroscope and two motor

encoders. The gyroscope computes the heading, θ(t), using a

kinematic equation based on the rotational velocity, ω(t), of

the robot body, i.e., θ̇(t) = ω. The equations for the optical

encoder measurements involve a gain transforming the wheels’
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rotational velocities to their linear velocities, i.e., vL(t) =
GEL ωL(t) and vR(t) = GER ωR(t), where GEL and GER

are the encoder gains for the left and right wheels, respectively.

These are used to calculate the measured translational velocity,

v, of the robot. In the bond graph of Fig. 1, v is represented

by the flow variable f36, associated with bond 36.

The sensors are modeled in the bond graph as modulated

sources of flow that encapsulate the measurement equations

for vL, vR, and θ. For the gyroscope, the flow source is the

rotational velocity of the robot, ω, represented in the model

as f20. The measured variable, the heading, is e29 (the effort

variable associated with bond 29), which is the integral of

ω plus the sensor bias (if any). For the case of the optical

encoders, the flow is the rotational velocity of a wheel (ωL

and ωR) passed through a gain, so the measured variables are

f25 and f28.

Position information is calculated in the bond graph using

velocity and heading information. These are also modeled

using modulated sources of flow. The x and y coordinates

are described by:

ẋ(t) =
vL(t) + vR(t)

2
cos θ(t),

ẏ(t) =
vL(t) + vR(t)

2
sin θ(t).

The modulated sources of flow provide these quantities, which

are integrated to obtain the coordinate positions of the robot,

e33 for the x coordinate, and e35 for the y coordinate.

Local controllers are also modeled in the bond graph. The

input to the robots are the motor torques modeled as mod-

ulated sources of effort, which encapsulate the wheel control

equations. In our model, each wheel has an accompanying PID

controller. For example, the equation of the controller for the

left wheel is given by:

τ = Kp(vL − vLd) + Ki

∫ t

0

(vL − vLd)dt + Kd
d(vL − vLd)

dt
,

where τ is the torque applied by the motor, Kp, Ki, and Kd are

the controller gains, and vLd is the reference velocity provided

by the formation controller described in the next subsection.

The torque for the left (right) wheel is represented in the bond

graph by the modulated source of effort MSeL (MSeR). The

PID controller is represented in the bond graph by the function

CL(·) (CR(·)) that modulates the torque. The edges from the

observed velocities to the wheel sources represent the control

links for the PID controllers. Other controller types can be

modeled similarly.

B. Modeling Formations of Mobile Robots

Following the approach in [1], we model a formation as a

tuple F = (S, C), where S is a set of shape variables defining

the formation structure, and C is a control graph showing the

control strategies for each robot and dependencies on their

neighbors. The shape variables S consist of relative bearings

and separations between robots. Control laws maintain either

the relative heading and separation of a follower to its leader

(separation-bearing control, or SBC), or the separations of a

follower from two leaders (separation-separation control, or

Fig. 2. Control variables in robot formations.

SSC). In this way, formations can be constructed by defining

for each robot its control strategy, shape variables, and leaders.

Definition 1 (Control Graph): A control graph C is a di-

rected, acyclic graph, where each robot, Ri, defines a vertex.

A directed edge (Ri, Rj) implies that Ri is a local leader to

Rj , i.e., Rj maintains its position with respect to Ri.

As in [1], we restrict a control graph with the following

constraints: (i) The formation leader, R1, has no incoming

edges and at least one outgoing edge, and (ii) all other robots

have at least one and no more than two incoming edges. If a

robot has exactly one incoming edge, then it employs the SBC

strategy, otherwise it has two incoming edges and it employs

the SSC strategy. In general, a robot with three or more

incoming edges is over-constrained for planar formations, so

this is disallowed.

We denote by lji the separation between Rj and Ri and

by bji the relative bearing from Rj to Ri as measured from

Ri’s axis of symmetry to the line connecting the center of

Rj’s wheel axis with the point d units from the center of Ri’s

wheel axis, as shown in Fig. 2. A subscript d denotes a desired

value, and a subscript i indicates a variable associated with Ri.

With local leader Rj , the SBC control equations [2] for the

follower, Ri, describe the desired rotational velocity ωdi and

linear velocity vdi, and are given as follows.

ωdi =
cos γj

d
{αblji(bdji − bji) − vj sin bji + ljiωj +

ρji sin γj}

vdi = ρji − dωdi tan γj ,

where

ρji =
αl(ldji − lji) + vj cos bji

cos γj
,

γj = θj + bji − θi,

and αl and αb are control gains for the separation and bearing,

respectively.

With local leaders Rj and Rk, the SSC control equations

[2] for the follower, Ri, are given as follows.

ωdi =
1

d sin (γj − γk)
{αlj(ldji − lji) cos γk +

vj cos bji cos γk −

αlk(ldki − lki) cos γj −

vk cos bki cos γj}

vdi =
αlj(ldji − lji) + vj cos bji − dωdi sin γj

cos γj
,

where αlj and αlk are control gains for separations from Rj

and Rk, respectively.
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Fig. 3. Example formation of six robots.

The formation control outputs vdi and ωdi can be decoupled

into individual left and right wheel velocities to serve as inputs

to the wheels’ PID controllers as vLdi = vdi−rωdi and vRdi =
vdi + rωdi, where r is half the wheel base (see Fig. 2).

Fig. 3 shows an example formation structure. R1 is the

leader, and moves in a pre-defined trajectory. R2 employs

SBC, so it only maintains its separation and bearing with

respect to R1. R3 uses SSC, maintaining its separation from

R1 and R2. R5 and R6 also utilize SSC, and R4 uses SBC.

The distributed control algorithm is modeled in the bond

graph in the same manner as the local PID control. Because

heading, position, and velocity measurements are required for

the control, signals are introduced from each robot’s x, y, θ,

and v measurements to its own wheel sources, and also to the

wheel sources of each follower to represent the communication

between the robots. For example, following the formation in

Fig. 3, signal edges are constructed from v2 (f36,2) of R2 to

MSeL,3 (e1,3) and MSeR,3 (e17,3) of R3 because CL,3(·) and

CR,3(·) take v2 as an argument. The multi-robot bond graph

is derived from the composition of single robot bond graphs

with these signal edges included.

C. Modeling Faults

Faults are represented as abrupt parameter value changes in

the bond graph model. Table I shows the possible actuator and

sensor faults that can occur in the robot, and the corresponding

parameters in the bond graph model (a superscript of + or

- indicates the direction of change of the parameter value).

Actuator (motor) faults are modeled as changes in the effort

sources. A saturation fault in an actuator limits the maximum

wheel velocity. Sensor bias is modeled as an additive fault,

and is represented by a change in the effort source at the

measured value (nominally the effort is 0). For example, a bias

in the gyroscope manifests as an abrupt, constant value added

to the true measurement value. Sensor failures are modeled

as multiplicative faults and are parameterized by a change in

the sensors’ transformer gains. For the optical encoders, the

nominal value of GEL (or GER) is rw, the wheel radius. A

fault in the encoder is modeled as a reduction in gain, i.e.,

its value reduces to a number in the interval [0, rw). This

corresponds to a percentage of the encoder counts that are

missed (at least 10%).

TABLE I

FAULT PARAMETERS IN THE BOND GRAPH MODEL

Fault Parameter

Left actuator saturation/failure MSe−
L

Right actuator saturation/failure MSe−
R

Left encoder (partial) failure G−

EL

Right encoder (partial) failure G
−

ER

Gyroscope bias B
+
gyro, B

−

gyro

Our diagnosis approach makes the following assumptions:

(i) faults are persistent, (ii) only single faults occur, and (iii)

the fault profile is an abrupt change. Although restrictive, many

practical faults can be handled under this assumption. For

example, if a robot gets stuck or is occluded by an obstacle,

then this will manifest qualitatively as an actuator fault, i.e.,

the robot will slow down abruptly.

III. DIAGNOSIS APPROACH

Our distributed diagnosis algorithm considers a finite set of

abrupt, persistent faults, and makes the single fault assumption.

We denote the complete set of system faults as F , and the

complete set of measurements as M . For a system of n robots,

associated with each robot Ri is a set of local faults Fi and a

set of local measurements Mi, such that

F =
⋃

1≤i≤n

Fi and M =
⋃

1≤i≤n

Mi.

In distributed diagnosis, our objective is to design n diagnosers

Di, one for each robot Ri, so that Di can diagnose all faults in

Fi using M+

i , where M+

i , Mi∪Mci, and Mci are additional

measurements from other robots. The design goal is to find the

minimum set Mci ⊆ M such that each fault f ∈ Fi can be

uniquely isolated within the fault set F using M+

i . If Mci =
∅, then Fi is said to be strongly independent from the other

fault sets [17], i.e., faults in Fi can be globally isolated using

only measurements in Mi, and we say that the diagnoser Di is

independent of the other diagnosers. Otherwise, Fi is said to be

weakly independent, i.e., to obtain globally correct diagnoses

for the faults in Fi, Di must use additional measurements. We

will show in Section V-E that some robots’ fault sets will be

strongly independent, and others will be weakly independent.

The measurement set M+

i allows Di to distinguish uniquely

every fault f ∈ Fi from the fault set Fi (local faults), and

from F − Fi (remote faults). Our design ensures that the

effects observed on M+

i can only be explained by a single

fault flocal ∈ Fi or some (unknown) fault fremote ∈ F − Fi.

Each robot Ri knows only the effects of faults in Fi on

measurements in M+

i . Therefore, if there is no f ∈ Fi

which matches the observations, the fault is guaranteed to be

remote. Under the single fault assumption, agreement between

individual diagnosers is reached implicitly. If f ∈ F occurs,

it will belong to exactly one Fi thus exactly one robot,

Ri, will achieve the diagnosis {f} and all other robots will

eventually achieve the (empty) diagnosis ∅. Therefore, the

global diagnosis is simply {f}. Practically, we do not have

to wait for all other robots to complete their diagnostic tasks.
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Fig. 4. Diagnosis architecture for R3

A robot Ri may conclude that its diagnosis {f} is the global

diagnosis if one of three conditions holds: (i) all measurements

in M+

i have deviated, so by design no other fault could

have occurred, (ii) all other robots have reached the diagnosis

∅, thus leaving only {f}, or (iii) measurement deviation

information allows the robot to conclude a remote fault could

not have occurred.

The diagnosis architecture for the multi-robot system con-

sists of four core components. Fig. 4 illustrates the architecture

for R3 in the six-robot formation example. A follower robot

Ri (e.g., R3) receives communicated inputs uji (u13 and u23)

from each local leader Rj (R1 and R2). The local observers,

implemented as Kalman filters, are based on a state space

model of each robot derived from the bond graph. An observer

computes the output estimates, ẑi, (ẑ3) given the input ui

(u3), the local measurements zi (z3), and communicated state

information, x̂ji (x̂13 and x̂23), from each leader Rj (R1 and

R2) as necessary. It also outputs relevant state information,

x̂ik (x̂36) to each follower Rk (R6). The fault detectors

compute the residuals of the measurements as differences

between actual and predicted values. If a fault is detected,

the symbol generator computes qualitative values, si (s3),

i.e., fault signatures, for the changes in measurement values.

Each local diagnoser uses these signatures and communicated

signatures sji (s13 and s23) from each required robot Rj

(R1 and R2) to isolate the fault. The required communicated

signatures are determined by the distributed diagnoser design

discussed in Section V-E. The local diagnoser also outputs

some of its own signatures, sik (s36), required by the diagnoser

design for other diagnosers Dk (D6) to use.

IV. DISTRIBUTED FAULT DETECTION

Fault detection operates on the residuals, defined as the

difference between model-predicted and actual measurement

outputs. For an ideal system with noiseless measurements and

a perfect model, a nonzero residual vector indicates a fault

occurrence. Noise and model imperfections make the residual

generation and fault detection tasks more complex. We address

this issue using a Kalman filter to track the system trajectory,

and defining the fault detection task as a statistical test of

significance. In both the Kalman filter and the fault detection

test, all noise is assumed to be Gaussian with zero-mean.

The fault detection strategy is extended for multi-robot sys-

tems by using a distributed, decentralized, extended Kalman

filter (DDEKF) scheme [39]. This method creates local filters

for each robot, which share relevant observations and esti-

mates. Each DDEKF produces estimates of the local state

vector using local observations, local estimates, and required

shared observations and estimates. For the formation system,

each follower must know the estimates of x, y, θ, and v
for each local leader. Each robot observes its own wheel

velocities and heading, i.e., the local measurements are zi

= [vLi vRi θi]
T for Ri. State space equations required by

the Kalman filters are directly derived from the bond graph

model [6]. Unknown bond graph parameters were estimated

using system identification techniques. We use a discrete-time,

reduced order form of the derived state space model, assuming

the dynamics of the wheels are decoupled. For the reduced

model, the local state vector for Ri is xi = [xi yi θi vLi aLi

bLi vRi aRi bRi xj yj θj vj xk yk θk vk]T , where j and k
are the local leader robots. The variables aLi, bLi and aRi,

bRi correspond to dynamic states of the left and right wheels,

respectively, and are based on a 3-dimensional model of each

wheel derived using system identification.

The DDEKF estimate update equations are given by:

ẑi(k) = Ci(k)x̂i(k|k)

x̂i(k|k) = Pi(k|k){P+

i (k|k − 1)x̂i(k|k − 1) +
n∑

j=1

P+

i (k|zj(k))x̂i(k|zj(k))]}

Pi(k|k) = [P+

i (k|k − 1) +
n∑

j=1

P+

i (k|zj(k))]+,

where Ci is the local output matrix, Pi the local covariance

matrix, n the number of subsystems, and + indicates the

generalized matrix inverse.

The difference between the observed outputs, zi(k), and the

estimated outputs, ẑi(k), define the residual vector. Each robot

computes its own measurement residuals. The fault detection

scheme is based on a Z-test [40] that uses the estimated

variance of the residuals and a pre-specified confidence level.

A small sliding window (e.g., 5 samples) is used to estimate

the current mean of the residuals, and this is preceded by a

much larger sliding window (e.g., 100 samples) to estimate

the variance [41]. When the current mean of one of the

residual signals shows a statistically significant deviation from

zero (accounting for modeling error), a fault is detected. By

adjusting window sizes and the modeling error parameter, the

detectors are tuned to keep the false alarm (false positive)

rate below pre-specified thresholds for the fault magnitudes

under consideration and the deployment environment. Since

faults are persistent, missed detections (false negatives) will

not occur unless the fault magnitude is very small. This tuning

sets the sensitivity of the fault detector. At high sensitivity,

detection is fast and the chance of false negatives is low,

but the chance of false positives is high. At low sensitivity,

detection is slow and the chance of false positives is low, but

the chance of false negatives is high. Other fault detection

strategies are discussed in [42]–[44] and the references therein,

and could be applied instead.

The change in the residual is analyzed to determine if
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an abrupt change (discontinuity) has occurred in the mea-

surement. A discontinuity produces a smooth change in the

opposite direction of the initial abrupt change [8]. A nondis-

continuous change, however, does not produce an immediate

direction change. Again using the Z-test, the slope of the

residual is determined over a small window (e.g., 6 samples)

after the point of fault detection. If the slope is determined

within the window and is opposite in direction from the initial

change, the observed change is classified as a discontinuity.

Otherwise, we assume no discontinuity has occurred.

V. FAULT ISOLATION

A. Background

The TRANSCEND scheme [8], [9] is employed for diagnosis

of abrupt faults in the multi-robot system. Fault isolation

in TRANSCEND is based on a qualitative analysis of the

transient dynamics caused by abrupt faults. Deviations in

measurement values after a fault occurrence can be represented

as a fault signature, where predicted deviations in magnitude

and higher order derivative values are mapped to symbols of

the set {+,0,-}. Magnitude changes correspond to a deviation

above normal, no deviation, and a deviation below normal,

respectively, and derivative values imply increasing, steady,

and decreasing values for the signals, respectively.

Fault isolation in TRANSCEND utilizes a Temporal Causal

Graph (TCG) representation, which can be derived directly

from the bond graph model of the system (see [8] for details).

The TCG captures the causal and temporal relations between

system variables based on the bond graph element constituent

equations. It specifies the signal flow graph of the system

in a form where edges are labeled with single component

parameter values (e.g. RL, GEL), or direct (+1) and inverse

(−1) proportionality relations between the source and desti-

nation vertices. Temporal relations (e.g. dt/mW , dt/Mc) on

the edges indicate that the source vertex affects the derivative

of its destination vertex. Fig. 5 depicts the TCG model for

a single robot, with state variables circled and measured

variables boxed. The remaining variables are system variables

algebraically related to the state variables.

The TCG of the entire system is derived systematically

from the global system bond graph model. It consists of a

TCG for each robot, with additional edges between the robot

TCG models that convey the measurements required by the

formation control. These additional edges start at the local

or remote measurement vertex and end at the effort source

vertices representing actuator torque. For example, an edge

is required from f36,2 of R2’s TCG (v2) to e1,3 of R3’s

TCG (τL3) because R3’s control requires v2 as an input. This

represents the fact that the torque τL3 is causally influenced

by v2. The labels on these edges include a dt specifier to

indicate a time delay due to the system dynamics. The sign

of the label depends on whether a change in the measurement

will cause a direct or inverse change on the control output.

Because the control is nonlinear, the direction of change will

depend on the robot’s position. The effects of x, y, and θ
depend on position, but the control output change due to

a fault transient will always initially change in the same

Fig. 5. TCG for a single robot of the multi-robot system.

direction as the communicated velocity measurements. These

edges capture the qualitative effects of the measurements in

the transient dynamics of the robot’s motion. Therefore, the

global system TCG not only captures fault propagation within

a single robot but also from one robot to another through the

leader-follower interactions.

The qualitative fault isolation scheme in TRANSCEND in-

volves three steps: (i) generating initial fault hypotheses given

the initial set of deviated measurements, (ii) generating fault

signatures for all the hypotheses, and (iii) tracking the fault

transients using the fault signatures and a progressive moni-

toring scheme for all initial fault hypotheses. Fault signatures

[8] are generated by running a forward propagation algorithm

on the TCG to predict qualitative effects of faults on measure-

ments. The qualitative effect of a fault, + or -, is propagated

to all measurement vertices in the TCG to determine fault

signatures for each measurement. It can be shown that these

provide a temporal progression of the predicted qualitative

changes in the measured signal. By expressing the fault

signature as derivative effects, measurement analysis can be
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formulated as a progressive monitoring scheme, where lower

order changes manifest before higher order changes. This is

justified by a Taylor series expansion of a measured signal

deviation [9].

In the robot TCG, for example, the fault MSe−L starts

at the vertex e1. The - change propagates to the heading

measurement (vertex e29) by passing through four temporal

edges (e2

dt/mw

−→ f2, f7

dt/KL

−→ e7, e20

dt/Jc

−→ f20, and f31

dt
−→

e31) with the sign getting reversed once, thus the first change is

a 4th order change of +. This change will eventually manifest

as a change in magnitude and slope, which can be reliably

measured.

Symbol generation on measurement residuals produces two

qualitative symbols: a magnitude symbol (indicating a dis-

continuity), and a slope symbol (indicating the direction of

change). Fault isolation in TRANSCEND compares residual

magnitude and slopes to predicted fault signatures. Fault

hypotheses whose signatures are consistent with the measured

residual symbols are retained, and others are dropped.

B. Fault Propagation Graph

The effects of a fault in a single robot may propagate to

other robots in the system through the control links. This is

modeled in the global TCG. For example, in Fig. 3, if an

actuator fault occurs in R2, it cannot maintain its separation

and bearing with respect to R1. Because R1 will continue on

its predefined trajectory, R3 will lose its ability to maintain

its pre-specified separation to both R1 and R2. Therefore,

the fault in R2 has now propagated to R3. Since R3 can

no longer act as a leader to its followers, the formation will

not be maintained, and the fault will further propagate to R6.

On the other hand, R4 can still maintain its separation and

bearing with respect to R2, and thus R5 can also maintain

its separations to R2 and R4. Depending on the situation and

control strategy employed, faults will, therefore, propagate to

some parts of the system and not others. To make the overall

diagnosis process more efficient, we can remove causal links

between the robots where faults do not propagate, and still

generate correct diagnosis results. The reduced interactions

between the robots are captured in the form of a fault

propagation graph that is derived from the control graph.

Definition 2 (Fault Propagation Graph): A fault propaga-

tion graph G is a directed, acyclic graph, where each robot,

Ri, defines a vertex of the graph. A directed edge (Ri, Rj)
implies that faults may propagate from Ri to Rj . We denote

the parents of a robot Ri in G as Par(Ri) and the ancestors

as Anc(Ri).
Fig. 6 shows the fault propagation graph for the six-robot

formation. To improve the efficiency of diagnosis, the fault

propagation graph is constructed as a subset of the formation

control graph. An edge (Ri, Rj) in a formation control graph

C is not included in the corresponding graph G, if Rj has

only one incoming edge. Faults do not propagate to robots

with single incoming edges, i.e., robots that have a single

leader, because that robot can maintain its position relative to

its leader for any arbitrary trajectory if it is not faulty itself. In

the example formation illustrated in Fig. 3, edges (R1, R2) and

R
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Fig. 6. Fault propagation graph for the formation of six robots.

(R2, R4) are removed because R2 and R4 have single leaders.

An edge (Ri, Rj) from the control graph C is also removed if

Rj has another edge (Rk, Rj) and Rk has a single incoming

edge (Ri, Rk). Faults also do not propagate along these edges,

because a fault in Ri would not propagate to Rk, and since Rj

depends on both Ri and Rk, it will not exhibit faulty behavior

if Ri does. In the example, edges (R1, R3) and (R2, R5) are

removed. A simple algorithm can be constructed to find and

remove all such edges. Note that only robots employing SBC

can become source vertices, i.e., have no incoming edges,

through this procedure.

The fault propagation graph describes whether to treat

control information as inputs (through which faults do not

propagate) or remote measurements (through which faults

do propagate). The fault detection model can, therefore, be

simplified with respect to G. An absent link from Ri and Rj

in G indicates that Rj does not require estimates from Ri to

produce its local estimates.

C. Diagnosability Analysis

An important prerequisite for diagnoser design is to de-

termine whether the system is diagnosable, i.e., all faults of

interest can be uniquely isolated with the given measurement

set. A fault f1 will be distinguished from another fault f2 if,

during the isolation process, a measurement deviation occurs

that matches the fault signature for f1 but not f2.

Table II shows the fault signatures for faults and measure-

ments of two robots, R2 and R3, in the six-robot formation.

The signatures are generated from the system TCG, with only

the magnitude change (discontinuity) symbol and the first non-

zero direction of change symbol shown. A * symbol indicates

an indeterminate effect, i.e., there are at least two paths of

the same order that propagate + and - effects, and, therefore,

the sign of the change cannot be computed using qualitative

propagation. Some of the effects of these faults are determined

by the robot’s position, since the controller inputs are functions

of separations and bearings, which are functions of position.

Such effects are denoted by a 0±. A 00 indicates that a fault

has no effect on the corresponding measurement because there

is no path to it.

From the signatures, it is clear that not all faults can be

distinguished. If some fault f occurs in R2, one of R2’s

measurements will deviate. Because, faults in R3 do not

propagate to R2’s measurements, the fault f cannot belong

to R3. This is indicated by the absence of a causal path

from R3 to R2 and qualified by the 00 symbols in the

lower left segment of Table II. However, if an actuator fault

occurs in R3, deviations could match those of one of R2’s
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TABLE II

FAULT SIGNATURES FOR R2 AND R3 IN THE SIX-ROBOT FORMATION

Fault vL2 vR2 v2 θ2 vL3 vR3 v3 θ3

MSe−
L,2

0- 0* 0- 0+ 0± 0± 0- 0±

MSe−
R,2

0* 0- 0- 0- 0± 0± 0- 0±

G−

EL,2
-+ 0* -+ 0- 0± 0± 0- 0±

G−

ER,2
0* -+ -+ 0+ 0± 0± 0- 0±

B+

gyro,2 0+ 0- 0* +- 0± 0± 0± 0±

B−

gyro,2 0- 0+ 0* -+ 0± 0± 0± 0±

MSe
−

L,3
00 00 00 00 0- 0* 0- 0+

MSe
−

R,3
00 00 00 00 0* 0- 0- 0-

G
−

EL,3
00 00 00 00 -+ 0* -+ 0-

G
−

ER,3
00 00 00 00 0* -+ -+ 0+

B
+

gyro,3 00 00 00 00 0+ 0- 0* +-

B
−

gyro,3 00 00 00 00 0- 0+ 0* -+

faults. Since R2’s measurements will never deviate if one of

these faults occurs, we would have to wait infinitely long

before we can be certain the fault does not belong to R2. For

example, if MSe−L3
occurs, its effects on R3’s measurements

could manifest as 0- on vL3, 0- on vR3, 0- on v3, and

0+ on θ3, which can be explained by any of the faults for

R2. In general, we cannot distinguish between actuator faults

occurring on different robots in the formation. Therefore, using

the given measurement set and the fault signature approach,

the system is not globally diagnosable. This motivates the need

for employing additional discriminatory information to achieve

global diagnosability.

D. Relative Measurement Orderings

The traditional TRANSCEND scheme uses fault signatures

to distinguish between faults. The order in which the mea-

surements deviate is not taken into account when refining

fault hypotheses. Relative measurement orderings capture the

intuition that fault effects will manifest in some parts of the

system before others. For example, a fault occurring in one

robot will likely manifest first in that robot and then in the

remote robot, if there are energy storage elements in the path

between the local and remote sensors in the bond graph model.

If there are no energy storage elements, the relation is algebraic

and no delay will be observed.

Definition 3 (Relative Measurement Ordering): Consider a

fault f and measurements m1 and m2. If the effects of the

fault f manifest in m1 before m2 then we can define a

relative measurement ordering between m1 and m2 for fault

f , denoted as m1 ≺f m2.

Relative measurement orderings can be derived from the

TCG based on the notion of a fault path.

Definition 4 (Fault Path): A fault path for a fault f and

measurement m is a path in the TCG which begins at the

fault f and ends at the measurement m.

The set of all fault paths from f to m is denoted by FPf,m.

The order of a fault path is defined as the number of temporal

edges in the path. A minimum order fault path is a path in

FPf,m that contains the minimum number of temporal edges

needed to reach m from f . More than one fault path of a

specific order may exist for f and m, since there are often

multiple paths from one vertex to another in the TCG.

Definition 5 (Minimum Order Fault Path Set): The

minimum order fault path set for f and m is the set of

all minimum order fault paths, and is denoted as FP ∗
f,m.

A fault path represents the temporal propagation of a fault

to a specific measurement variable in the system. For a

certain fault, there may be multiple fault paths leading to a

measurement. Since the lowest order effect of a fault will

manifest first [9], only the minimum order fault path sets are

useful in determining relative measurement orderings. For this

purpose, we define a method for comparing fault paths.

Definition 6 (Temporal Subpath): For p ∈ FPf,m1
and

p′ ∈ FPf,m2
, p is a temporal subpath of p′ (p ⊏ p′) if all

temporal edges in p exist in p′ in the same ordering, and the

order of p is less than the order of p′.
The following theorem shows how relative measurement

orderings are derived from the TCG.

Theorem 1: If for every p′ ∈ FP ∗
f,m2

there exists p ∈
FP ∗

f,m1
such that p ⊏ p′, then we have m1 ≺f m2.

Proof: In the signal flow graph for the TCG, let r1 be

the measurement vertex corresponding to m1, r2 the vertex

for m2, and rf the successor vertex of the edge with fault

parameter f . The transfer functions from rf to r1, R1(s)
and from rf to r2, R2(s), can be derived. Assume for every

p′ ∈ FP ∗
f,m2

there exists p ∈ FP ∗
f,m1

such that p ⊏ p′. Then

each minimum order path from rf to r2 must go through

r1 or a vertex which can be expressed as r1 · G, where G
is some constant gain. R2(s) is a sum of terms which each

correspond to different forward paths from rf to r2. Because

lower order effects manifest first, terms that correspond to

forward paths of non-minimum order can be removed to

produce R′
2(s). Similarly, R′

1(s) can be produced. Because

every minimum order path from rf to r2 goes through a

vertex r1 · G, R′
1(s) must appear as a factor in each term of

R′
2(s), therefore R′

2(s) = H(s)R′
1(s), where H(s) is a proper

transfer function. The order of m1 is less than the order of

m2 by the definition of the ⊏ relationship, so the number of

poles for R′
1(s) must be less than the number for R′

2(s). H(s)
must introduce more poles than zeros to R′

2(s), and, therefore,

H(s) is strictly proper. From H(s), we can discretize using the

given sampling rate of the system to get H(z). Since H(s) is

strictly proper, H(z) is, therefore r′2(k) = f(r′1(k−1)). Since

r′2(k) depends only on past values of r′1(k), with appropriately

selected detection thresholds1, a deviation resulting from fault

f will appear first in m1 and then in m2, thus m1 ≺f m2.

Therefore, for a given fault f , we can say that it manifests in

measurement m1 before measurement m2 if for all minimum

order fault paths of m2, there is a minimum order fault path

for m1 the fault will traverse before completely traversing the

given fault path of m2. The transient due to the fault is slower

for m2 than it is for m1, thus, the fault will cause a deviation

first in m1 and then in m2. If this ordering is violated, we can

eliminate that particular fault hypothesis f .

1This guarantees that for some time |r1(k)| will be greater than |r2(k)|,
after that time |r2(k)| may overtake |r1(k)| depending on the gain of H(z).
Therefore thresholds must be small enough such that deviations will cross
them before that time.
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For example, consider an actuator fault of the left wheel

of R1, MSe−L,1. The minimum order fault path set for the

velocity measurement of R1, vL1, consists of the path {e1

+1
−→

e2

dt/mw

−→ f2

=
−→ f23

=
−→ f24

GEL−→ f25}, which contains only

one temporal edge with label dt/mw, implying an integration

effect. Minimum order fault path sets for all other measure-

ments must pass through that same edge, thus the temporal

subpath relation holds. Therefore, we can define the ordering

vL1 ≺MSe−

L,1

m for all other measurements m.

Generation of the minimum order fault path sets can be per-

formed through a simple graph search on the TCG. Starting at

the fault parameter in the graph, a forward search is performed

to find all minimum order fault paths to each measurement.

Using these minimum order fault paths for a specific fault, the

temporal subpath relation can be checked between minimum

order fault paths to determine the measurement orderings as

described in Theorem 1.

Informally, two faults can be distinguished using orderings

if there exists two measurements which deviate in some order

for one fault, and in the opposite order for the other fault.

Discrimination between faults using relative measurement

orderings is based on the notion of temporal conflicts in the

ordering relationships.

Definition 7 (Ordering Set): An ordering set for a fault f ,

Ωf , is the set of all relative measurement orderings for fault

f .

Definition 8 (Temporal Conflict): A temporal conflict be-

tween ordering sets Ωf1
and Ωf2

for measurement set M
exists if there are two measurements mi,mj ∈ M such that

(mi ≺f1
mj) ∈ Ωf1

and (mj ≺f2
mi) ∈ Ωf2

.

For a given measurement set and for each fault, we can

derive a fault signature set and also an ordering set from the

TCG. Given the fault signatures, the ordering sets can be used

as additional distinguishing information for fault isolation.

Therefore, the discriminatory power of a set of measurements

is enhanced by using both fault signatures and relative mea-

surement orderings. For a given set of measurements, two

faults can be discriminated if they have different fault sig-

natures or if they have conflicts in their ordering sets. Further,

these two notions provide independent information and can

be combined to provide more discriminatory information to

distinguish among fault hypotheses.

Using this information, actuator faults can now be globally

distinguished. From the global TCG model, it follows that an

actuator fault will appear first in the velocity measurement

of that wheel and then in other measurements. Taking the

example from Table II, if MSe−L,3 occurs, it will manifest

first in vL3. Since none of R2’s measurements have yet

deviated, we know that the fault is local to R3. Using relative

measurement orderings, actuator faults occurring on different

robots can be distinguished.

Table III shows the relative measurement orderings for the

fault parameters of R2, for measurements associated with R2,

R3, and R6 in the six-robot formation. Orderings implied by

transitivity are omitted from the table. As evidenced by Table

III, faults manifest first in their associated measurement before

other measurements in the system (e.g., actuator and encoder

TABLE III

RELATIVE MEASUREMENT ORDERINGS FOR R2 IN THE SIX-ROBOT

FORMATION FOR MEASUREMENTS OF R2 , R3 , AND R6

Faults Relative Measurement Orderings

MSeL,2, GEL,2 vL2 ≺ vR2, vL2 ≺ θ2,

v2 ≺ vR2, v2 ≺ θ2,

vL2 ≺ vL3, vL2 ≺ vR3, vL2 ≺ v3,

v2 ≺ vL3, v2 ≺ vR3, v2 ≺ v3,

v3 ≺ θ3, v3 ≺ v6,

vL2 ≺ vL6, vL2 ≺ vR6, vL2 ≺ v6,

v2 ≺ vL6, v2 ≺ vR6, v2 ≺ v6,

v6 ≺ θ6

MSeR,2, GER,2 vR2 ≺ vL2, vR2 ≺ θ2,

v2 ≺ vR2, v2 ≺ θ2,

vR2 ≺ vL3, vR2 ≺ vR3, vR2 ≺ v3,

v2 ≺ vL3, v2 ≺ vR3, v2 ≺ v3,

v3 ≺ θ3, v3 ≺ v6,

vR2 ≺ vL6, vR2 ≺ vR6, vR2 ≺ v6,

v2 ≺ vL6, v2 ≺ vR6, v2 ≺ v6,

v6 ≺ θ6

B
+

gyro,2, B
−

gyro,2 θ2 ≺ vL2, θ2 ≺ vR2,

θ2 ≺ vL3, θ2 ≺ vR3, θ2 ≺ v3,

v3 ≺ θ3, v3 ≺ v6,

θ2 ≺ vL6, θ2 ≺ vR6, θ2 ≺ v6,

v6 ≺ θ6

faults manifest first in velocity measurements of that wheel).

Because faults cannot propagate in the opposite direction,

faults in R3 and R6 will both have orderings in the format

of mi ≺f mj , where mi is a local measurement, f is a local

fault, and mj is a measurement of R2. If a fault occurs in R2,

either v2 or θ2 will deviate before any measurement in R3.

Therefore, to distinguish between R2’s faults and R3’s faults,

one of these measurements will be useful. Which one is useful

depends on whether the fault is an actuator or encoder fault

(where v2 is useful) or a gyroscope fault (where θ2 is useful).

This results in the following lemma.

Lemma 1: Faults appearing in a parent Rp ∈ Par(Ri) in

G can be distinguished from faults appearing in Ri using

orderings for both vp and θp and local measurements of Ri.

Proof: Given Rp ∈ Par(Ri), all fi of Ri do not manifest

in Rp, because there is no causal path from Ri to Rp since G is

acyclic. So, we have the orderings mi ≺fi
vp and mi ≺fi

θp

for each fi of Ri. From the TCG analysis, each fault fp of Rp

passes through either vp or θp before any measurement of Ri,

thus resulting in either vp ≺fp
mi or θp ≺fp

mi for all mi

of Ri (Theorem 1). Therefore, the ordering sets will always

conflict and we can use this information to distinguish among

the faults.

It is important to note that we cannot derive orderings

comparing a left or right velocity of R3 to a left or right

velocity of R6. This is because the path to a left or right

velocity measurement of R6 could go through either the left

or right velocity of R3, and we don’t know which path is

faster. Thus, if an actuator fault occurs in R2, R3’s left and

right velocity measurements are useless to distinguish between

local and remote actuator faults. However, we do have the

ordering v3 ≺ v6 for all of R2’s faults. Thus we can use

v3 to distinguish between actuator faults in R1 and R6. The

ordering v3 ≺ v6 essentially says that either vL3 or vR3 will

deviate before any measurements of R6, since remote faults
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affect the velocity measurement first (v6 ≺ θ6 for all remote

faults). It does not matter which of vL3 or vR3 deviates first,

only knowing that one will deviate is helpful. So although v2

provides no extra discriminatory information in terms of fault

signatures, it is helpful in terms of measurement orderings.

This results in the following lemma.

Lemma 2: Faults appearing in an ancestor Ra ∈ Anc(Ri)
in G such that Ra ∈ Anc(Rp) and Rp ∈ Par(Ri), can be

distinguished from faults appearing in Ri using orderings for

vp and local measurements of Ri.

Proof: Given Rp ∈ Par(Ri), and Ra ∈ Anc(Rp), all fi

of Ri do not manifest in Rp, because there is no causal path

from Ri to Rp since G is acyclic. So, we have the ordering

mi ≺fi
vp for each fi of Ri. From the TCG analysis, each

fault fa of Ra passes through vp before any measurement of

Ri, thus resulting in vp ≺fa
mi for all mi of Ri (Theorem 1).

Therefore the ordering sets will always conflict, and we can

distinguish the faults.

The following theorem shows how local and remote faults

can be discriminated.

Theorem 2: A fault is local if and only if a local measure-

ment deviates before a remote measurement.

Proof: If a fault is local, a local measurement will deviate

before any remote measurement because for every local fault

there is some set of local measurements that deviate before

every other measurement. If a local measurement deviates

before a remote measurement, the fault must be local because

for all non-local faults, the fault will manifest in a parent (if the

fault originated in an ancestor) before the local robot (Lemmas

1 and 2), or in a child before the local robot (because faults

in a child never manifest in their parents).

E. Distributed Diagnosis

If the system is globally diagnosable, then a centralized

diagnoser can be constructed that can uniquely isolate all

faults. Such an approach, however, results in a very large

diagnoser that becomes a single point of failure. The single

point of failure can be avoided by replicating the centralized

diagnoser on each robot, however, this will be inefficient for

large formations. In addition, the diagnosers on each robot will

perform unnecessary computations involving fault hypotheses

that are not relevant to the particular robot. We instead take

a distributed approach, where each local diagnoser isolates

faults in its subsystem using local measurements and some

remote measurements, if required. Since accessing remote

measurements is expensive, our design goal is to find the

minimum number of remote measurements that makes each

subsystem globally diagnosable. The design approach ensures

that a local diagnosis will be globally correct, because exactly

one robot isolates the true fault and knows no remote faults

could have occurred. Since the local diagnosers achieve a

global diagnosis, this avoids the need for a centralized co-

ordinator [17].

The algorithm generates the distributed diagnoser by mini-

mizing the number of shared measurements between subsys-

tems. For each subsystem, if a fault is not globally diagnosable

using local measurements, it searches neighboring subsystems

Algorithm 1 Distributed Diagnoser Design

Input: local fault sets Fi, local measurement sets Mi, fault signa-
tures, ordering sets, k subsystems
for subsystem i ∈ 1, . . . , k do

identify set F ′

i ⊆ Fi such that f ∈ F ′

i cannot be completely
distinguished using Mi

for f ∈ F ′

i do
identify minimum set of communicated measurements to
globally diagnose f
add this set to the local measurement set

end for
end for

for a minimal set of additional measurements to make the fault

globally diagnosable. The pseudocode is given as Algorithm

1. In the worst case, all combinations of measurements are

considered, so the algorithm is exponential. From a practical

viewpoint, since the diagnosers are built offline, their design

time complexity is not of much concern.

For the formation system, the subsystems are the individual

robots. The diagnoser for Ri is responsible for diagnosing

faults in the set Fi = {MSe−L,i, MSe−R,i, G−
EL,i, G−

ER,i,

B+

gyro,i, B−
gyro,i} using measurements Mi = {vL,i, vR,i, vi,

θi}, i.e., each robot is responsible for diagnosing faults in its

components using its local measurements.

Running the algorithm shows that each robot must be

communicated the velocity and heading measurements of its

parents in the fault propagation graph. This ensures that each

robot has enough information to produce an independent,

globally correct diagnosis. From Lemma 1, each robot will

need both v and θ measurements of each parent in the fault

propagation graph, in order to distinguish between local faults

and those appearing in the parents. From Lemma 2, these mea-

surements are enough to distinguish between local faults and

those appearing in the ancestors in the fault propagation graph,

therefore, these are the minimal communicated measurements.

Additionally, the local v measurement is not necessary

to distinguish local and remote faults because vL and vR

provide the same information in this respect2. Essentially,

the discriminatory information that the remote v and θ mea-

surements provide is that if a remote fault occurs, it will

manifest in one of the remote v or θ measurements before any

local measurement, thus allowing the diagnosers to distinguish

between local and remote faults.

Table IV illustrates the individual fault and measurement

sets for the diagnosers in the six-robot formation. It is impor-

tant to note that not all robots require remote measurements

to determine a globally correct local diagnosis. Some of the

robots (R1, R2, and R4) require only local measurements,

i.e., these diagnosers are independent. This is the case when

the robot is a source vertex in the fault propagation graph,

and occurs because the fault effects of other robots cannot

propagate to it. Therefore, any fault effects it observes are

known to be caused by a local fault.

2Alternatively, v could be kept and vL and vR dropped, because the system
would still be diagnosable. However, we opt to keep vL and vR instead so
that we do not have to wait for θ to deviate in order to distinguish between
faults of the left and right wheels.
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TABLE IV

DISTRIBUTED DIAGNOSER DESIGN FOR THE SIX-ROBOT EXAMPLE

Robot Fault Set Measurement Set

R1 {MSe−
L,1

, MSe−
R,1

, G−

EL,1
, {vL,1, vR,1, θ1}

G−

ER,1
, B+

gyro,1, B−

gyro,1}

R2 {MSe−
L,2

, MSe−
R,2

, G−

EL,2
, {vL,2, vR,2, θ2}

G−

ER,2
, B+

gyro,2, B−

gyro,2}

R3 {MSe−
L,3

, MSe−
R,3

, G−

EL,3
, {vL,3, vR,3, θ3, v2, θ2}

G−

ER,3
, B+

gyro,3, B−

gyro,3}

R4 {MSe
−

L,4
, MSe

−

R,4
, G

−

EL,4
, {vL,4, vR,4, θ4}

G
−

ER,4
, B

+

gyro,4, B
−

gyro,4}

R5 {MSe−
L,5

, MSe−
R,5

, G−

EL,5
, {vL,5, vR,5, θ5, v4, θ4}

G−

ER,5
, B+

gyro,5, B−

gyro,5}

R6 {MSe−
L,6

, MSe−
R,6

, G−

EL,6
, {vL,6, vR,6, θ6, v3, θ3,

G−

ER,6
, B+

gyro,6, B−

gyro,6} v5, θ5}

These results easily extend to arbitrary formations that

satisfy the constraints of [1], [2]. The fault propagation graph

G can be derived from the control graph C. The diagnoser

design is direct from G since each robot needs the velocity

and heading measurements of each parent in G.

Like a centralized diagnoser, each local diagnoser runs

an online fault isolation algorithm [8]. The algorithm starts

with the set of local fault candidates and their associated

fault signatures after an initial deviation has been detected. It

matches the candidates’ predicted fault signatures to observed

measurement deviations as they appear, dropping candidates

whose signatures are inconsistent with observed transients.

Candidates are dropped if there exists an inconsistency be-

tween predicted and observed fault signatures or predicted and

observed measurement orderings. Using relative measurement

orderings makes fault isolation more efficient, because less

measurements are required to uniquely isolate a fault, and the

knowledge that a certain measurement has not yet deviated

provides useful information.

F. Scalability

The scalability of the approach can be characterized using

two metrics, the size of the diagnoser and the number of

communicated measurements, quantifying the computational

and communication requirements, respectively. Let F repre-

sent the complete fault set, M the complete measurement set,

and n the number of robots. Also, let Fi be the fault set of

Ri, and M+

i be the measurement set for Ri determined by

the distributed diagnoser design algorithm. In a centralized

approach, the central diagnoser must diagnose all faults in F
using measurements in M . The size of the diagnoser is then

SC = |F ||M | + |F ||M |2 so that it can store both signatures

and orderings for each fault. In the replicated centralized

diagnoser approach, each diagnoser is of size SC , resulting in

nSC space. In the proposed distributed approach, however, Ri

must only diagnose faults in Fi using measurements in M+

i ,

resulting in space complexity Si = |Fi||Mi|+ |Fi||M
+

i |2. The

total space required for all individual distributed diagnosers

will always be less than that of a centralized diagnoser, i.e.,

∑
i Si < SC if not all measurements are communicated. The

reason is that some of the information is discarded because

it is not useful in the local diagnosers. For example, we

don’t need to store anywhere the effects of R2’s faults on

R1’s measurements, because none of R1’s measurements are

needed to diagnose R2’s faults. Diagnoser size directly relates

to diagnostic efficiency. The smaller the diagnoser size, the

smaller the number of faults and measurements to consider,

and thus the greater its computational efficiency.

The number of communicated measurements characterize

the communication overhead incurred by the distributed algo-

rithm. In a centralized approach, each robot must communicate

its measurements to the centralized diagnoser, resulting in

a total of |M | communicated measurements. In a replicated

centralized diagnoser approach, each robot would have to

communicate its measurements to all other robots, resulting in

a total of
∑

i(n−1)|Mi| communicated measurements. In our

distributed approach, however, communication is minimized

by the diagnoser design algorithm. From Lemmas 1 and

2, only the velocity (v) and heading (θ) measurements are

required from each parent in the fault propagation graph.

Therefore, at most two measurements must be communicated

to each robot (except the formation leader) from each local

leader (at most two), resulting in at most 4(n − 1) commu-

nicated measurements for the worst case. Hence, the number

of communicated measurements required per robot is inde-

pendent of formation size. The total number of communicated

measurements for all robots is linear in the formation size,

so, like the centralized case, the approach scales linearly with

large formations. In the six-robot example used throughout

the paper, there are 4 edges in G, resulting in a total of 8

communicated measurements for the distributed approach. For

a centralized approach, since each robot has 3 measurements in

its measurement set, 18 measurements must be communicated.

VI. EXPERIMENTAL RESULTS

The effectiveness of the distributed detection and isolation

algorithms is demonstrated in a laboratory setting with four

ActivMedia Pioneer 3-DX mobile robots moving in the for-

mation illustrated in Fig. 7. The robots communicate over an

802.11b wireless ad-hoc network. Fig. 8 shows the nominal

trajectories of the robots moving at a pre-specified speed of

0.1 m/s. The experiment is run for 40 s. The top plot shows

the robot trajectories, with their starting and ending locations

drawn. The lower left plot shows the robot velocities, and the

lower right plot shows their headings. All the robots main-

tain the shape variables, so the formation is maintained. All

faults listed in Table I were introduced through software. The

sampling period of the distributed controllers and diagnosers

was 0.1 s. At the selected sampling rate, the packet loss was

negligible (measured less than 0.1%). Since communication is

expected at the selected sampling rate, persistent errors in the

network links can be easily diagnosed by software (viewed as

additional diagnosers) and are not considered here.

For this four-robot formation, the fault propagation graph

includes only the edges (R2, R3), (R2, R4), and (R3, R4).
Therefore, R3 requires measurements from R2 (v2 and θ2),
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Fig. 7. Experimental setup.
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Fig. 8. Nominal system behavior.

and R4 requires measurements from both R2 and R3 (v2, θ2,

v3, and θ3). R1 and R2 are source vertices so they require

only local measurements.

In the following, we illustrate our approach for an actuator

fault of the left wheel of R2 (MSe−R,2) at a magnitude of

0.05 m/s, i.e., the wheel velocity saturates at half the desired

speed. Fig. 9 shows the faulty trajectories for the robots, and

Table V traces the diagnosis steps. Initially, the diagnosers

assume empty fault sets. The fault is injected at t = 20.0 s.

It causes the left wheel to slow down, therefore, the heading

deviates, and the right wheel begins to speed up to keep its

separation with R1. R3 and R4 begin to slow down to maintain

their positions with respect to R2. A deviation in vL,2 at

20.4 s triggers R2’s fault isolation procedure. Six steps later

the deviation is determined not to be discontinuous, i.e., the

change in the measurement is smooth, not abrupt.

R2 starts with its entire fault set, F2, as the set of possible

candidates. As predicted, vL,2 is the first deviation, so based

on orderings, the fault set is reduced to the faults of the left

wheel. The change of vL,2 matches the fault signature of

0-, thus isolating the fault to be MSe−L,2. By design, this is

guaranteed to be the globally unique fault, so recovery actions

may commence and the other robots notified. Only one mea-

surement deviation was needed to obtain a global diagnosis, so

this demonstrates the efficiency of using relative measurement

orderings in fault isolation. Because a communicated remote

measurement (v2) has deviated before any local measurements,
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Fig. 9. System behavior with MSe−
R,2

occurring with 0.05 m/s magnitude.

TABLE V

DIAGNOSIS TRACE FOR LEFT ACTUATOR FAULT OF R2

Time Event R1 R2 R3 R4

20.0 Fault injected (R2) ∅ ∅ ∅ ∅
20.4 Fault detected (R2) ∅ F2 F3 F4

vL2 deviates ∅ {MSe
−

L,2
, G

−

EL,2
} ∅ ∅

20.7 θ2 deviates ∅ {MSe−
L,2

, G−

EL,2
} ∅ ∅

21.0 vL2 0- determined ∅ {MSe−
L,2

} ∅ ∅

Diagnosis (R2) ∅ MSe−
L,2

∅ ∅

R3 and R4 can eliminate all their local faults and determine

a remote fault has occurred. R1 does not observe a deviation

in any of its local measurements so it does not produce a

diagnosis.

We illustrate our approach now for an encoder fault of the

right wheel of R2 (G−
ER,2) at a magnitude of 30%, i.e., the

encoder misses 30% of its counts. Fig. 10 shows the faulty

trajectories for the robots, and Table VI traces the diagnosis

steps. Initially, the diagnosers assume empty fault sets. The

fault is injected at t = 20.0 s. It causes an abrupt decrease

in the right velocity measurement, causing the right wheel

to speed up. Therefore, the heading deviates, and the left

wheel begins to slow down to keep its separation with R1.

R3 and R4 begin to speed up to maintain their positions with

respect to R2. A deviation in vR,2 at 20.1 s triggers R2’s fault

isolation procedure. Six steps later the deviation is labelled as

discontinuous.

R2 starts with its entire fault set, F2, as its set of possible

candidates. As predicted, vR,2 is the first deviation, so based

on orderings, the fault set is reduced to only faults of the right

wheel. The change of vR,2 matches the fault signature of -+,

thus isolating the fault to be G−
ER,2. Again, by design, this is

guaranteed to be the globally unique fault. For this example

too, only one measurement deviation was needed to obtain a

global diagnosis, so this demonstrates the efficiency of using

relative measurement orderings in fault isolation. Because a

communicated remote measurement (v2) has deviated before
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Fig. 10. System behavior with G−

ER,2
occurring with 30% magnitude.

TABLE VI

DIAGNOSIS TRACE FOR RIGHT ENCODER FAULT OF R2

Time Event R1 R2 R3 R4

20.0 Fault injected (R2) ∅ ∅ ∅ ∅
20.1 Fault detected (R2) ∅ F2 F3 F4

vR2 deviates ∅ {MSe−
R,2

, G−

ER,2
} ∅ ∅

20.4 vR4 deviates ∅ {MSe−
R,2

, G−

ER,2
} ∅ ∅

20.5 vL2 deviates ∅ {MSe
−

R,2
, G

−

ER,2
} ∅ ∅

20.6 θ2 deviates ∅ {MSe−
R,2

, G−

ER,2
} ∅ ∅

20.7 vL2 -+ determined ∅ {G−

ER,2
} ∅ ∅

Diagnosis (R2) ∅ G−

ER,2
∅ ∅

any local measurements, R3 and R4 can eliminate all their

local faults and determine a remote fault has occurred. R1

does not observe a deviation in any of its local measurements

so it does not produce a diagnosis.

All faults of interest, listed in Table I, were successfully

isolated using the distributed diagnoser. The summary of the

diagnosis results is shown in Table VII. Due to the high

discriminatory power the combination of fault signatures and

relative measurement orderings provide, all faults could be

isolated with only a single measurement deviating. The magni-

tude of the fault and its time of injection are shown, along with

all measurement deviations observed until a global diagnosis

is known. All faults were injected at 20 s. Beside each

measurement deviation is the time of detection followed by

the time at which it was determined whether or not a discon-

tinuity occurred. The approach is applicable for smaller fault

magnitudes, as long as the fault detector is appropriately tuned.

If the fault detector and symbol generation work correctly,

then by construction the fault isolation will always execute

correctly. The fault detector was tuned for the laboratory

setting and the fault magnitudes under consideration. Multiple

experiments were performed to achieve reliable fault detection,

and, therefore, no false positives occurred. Because the fault

magnitudes were sufficiently large compared to the system

TABLE VII

DIAGNOSIS RESULTS

Fault Magnitude Diagnosis Trace

MSe−
L,2

90 mm/s vL2 0- 20.4-21.0 s

MSe−
L,2

70 mm/s vL2 0- 20.3-20.9 s

MSe−
L,2

50 mm/s vL2 0- 20.4-21.0 s

G−

ER,2
10% vR2 -+ 20.1-20.6 s

G−

ER,2
30% vR2 -+ 20.1-20.7 s

G−

ER,2
50% vR2 -+ 20.0-20.0 s

B+

gyro,2 0.08 rad θ2 +- 20.1-20.1 s

B+

gyro,2 0.1 rad θ2 +- 20.1-20.1 s

B−

gyro,2 -0.08 rad θ2 -+ 20.1-20.1 s

B−

gyro,2 -0.1 rad θ2 -+ 20.0-20.0 s

MSe
−

L,3
50 mm/s vL3 0- 20.4-21.0 s

MSe
−

R,3
50 mm/s vR3 0- 20.3-20.9 s

noise, false negatives did not occur either.

VII. CONCLUSIONS

In this paper we described an approach for distributed

diagnosis in formations of mobile robots. We derived the

system model encompassing the plant, sensors, actuators,

communication, and control. The DDEKF scheme was applied

for distributed estimation and tracking of nominal system

behavior, and the Z-test was used for robust fault detec-

tion. The qualitative fault isolation scheme combined the

use of fault signatures and relative measurement orderings,

increasing the discriminatory power of the measurement sets.

Measurement orderings were shown to be necessary to ensure

diagnosability in the formation systems studied in this paper.

Using both signatures and orderings, diagnosers can require

fewer measurements, and diagnosis results are achieved faster.

Distributed diagnosers were designed from a global system

model, and the diagnosis scheme was shown to scale well

with formation size. The design was such that each local

diagnosis was globally correct, thus circumventing the need for

a centralized coordinator. Experimental results demonstrated

the validity and usefulness of the approach.

Future work will address the current limitations of the

approach. Inclusion of incipient fault profiles and diagnosis

of multiple faults are important, as well as addressing discrete

and coordination failures. With these addressed, the diagnosis

approach can be integrated into a fault-adaptive control ar-

chitecture. Formations where the relations between the robots

change over time may be addressed by adding machinery to

reconfigure the local diagnosers appropriately.
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