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Abstract—The application of model-based diagnosis schemes
to real systems introduces many significant challenges, such
as building accurate system models for heterogeneous sys-
tems with complex behaviors, dealing with noisy measurements
and disturbances, and producing valuable results in a timely
manner with limited information and computational resources.
The Advanced Diagnostics and Prognostics Testbed (ADAPT),
deployed at NASA Ames Research Center, is a representative
spacecraft electrical power distribution system that embodies a
number of these challenges. ADAPT contains a large number
of interconnected components, and a set of circuit breakers
and relays that enable a number of distinct power distribution
configurations. The system includes electrical dc and ac loads,
mechanical subsystems, such as motors, and fluid systems, such
as pumps. The system components are susceptible to different
types of faults, i.e., unexpected changes in parameter values,
discrete faults in switching elements, and sensor faults. This
paper presents Hybrid TRANSCEND, a comprehensive model-
based diagnosis scheme to address these challenges. The scheme
uses the hybrid bond graph modeling language to systematically
develop computational models and algorithms for hybrid state
estimation, robust fault detection, and efficient fault isolation. The
computational methods are implemented as a suite of software
tools that enable diagnostic analysis and testing through simula-
tion, diagnosability studies, and deployment on the experimental
testbed. Simulation and experimental results demonstrate the
effectiveness of the methodology.

Index Terms—Model-based diagnosis, distributed diagnosis,
hybrid systems, hybrid bond graphs, electrical power distribution
systems.

I. INTRODUCTION

The increasing complexity of modern engineering systems
has necessitated the deployment of online health monitoring
and diagnosis schemes to ensure their safe, reliable, and
efficient operation. Model-based diagnosis schemes are the
preferred approach, because they allow for more general and
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robust diagnosis solutions [1]–[6]. However, deployment of
these schemes on real systems presents significant challenges
in model development, system monitoring, and fault isolation.

Model-based diagnosis requires accurate and reliable mod-
els of real physical processes that encompass multiple domains
(e.g., hydraulic, electrical, and mechanical). Behaviors can
be nonlinear, and the interactions between components, and
between the system and the environment, can be difficult
to capture. Further, real-world systems are multi-modal, i.e.,
they operate in many different configurations. Modeling their
dynamics in a concise and efficient framework is a key
challenge. In practice, balancing the details incorporated into
the model to ensure diagnosability, while keeping the model
complexity manageable, is an additional challenge.

The problem of monitoring complex systems to detect faulty
behavior also presents a number of challenges. In model-
based diagnosis, a model of the system is used to predict
nominal behavior, and deviations between observed and pre-
dicted behavior signal the presence of faults. However, system
monitoring is often performed with incomplete information
due to lack of sensors, or with sensors that only provide data
at rates slower than what is required to accurately estimate the
system state. In addition, uncertainty in both the measurements
and the system model may degrade the estimation accuracy.
In spite of these difficulties, fault detection must be robust to
minimize false alarms, missed detections, and detection delays.

Challenges also arise in the fault isolation task. Different
types of faults (abrupt, incipient, and discrete) can manifest
in system components, sensors, and actuators. Interactions
among components may make it hard to distinguish between
faults. Further, fault isolation is impacted by the granularity
of the model and the measurements that are available to the
diagnosis system. Even with these issues, diagnosis algorithms
must provide robust, accurate, and precise results in a timely
manner. Computational issues arise in accomplishing this goal,
particularly with large-scale, nonlinear, multi-modal systems.
Efficiency and scalability thus become key concerns.

The Advanced Diagnostics and Prognostics Testbed
(ADAPT), developed at NASA Ames Research Center, em-
ulates a spacecraft power storage and distribution system [7].
It is designed to provide an environment where researchers
and practitioners can tackle the challenges of diagnosis and
prognosis in a realistic environment. The testbed is multi-
modal, and can be commanded into many different config-
urations through the use of relays and circuit breakers. The
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Fig. 1. Run-time diagnosis architecture.

system is multi-domain, and the heterogeneous components
exhibit diverse behavior characteristics with contrasting time
constants. Therefore, faults in the system take on multiple
forms, and the faulty behaviors can evolve at widely differing
rates. The system includes a number of sensors that measure
system variables such as voltages, currents, and temperatures.
However, only limited information and data is available to
estimate and validate the parameters of the dynamic models
of the system. In addition, the system is limited by the data
collection rate at which these behaviors are monitored.

In order to address the challenges of diagnosis of real-
world systems, we have developed the Fault-Adaptive Con-
trol Technology (FACT) tool-suite [8], which encompasses a
comprehensive modeling and diagnosis approach for hybrid
systems based on the Hybrid TRANSCEND methodology [9].
To apply the framework to ADAPT, we devise a number
of innovative and novel extensions. First, we extend our
hybrid diagnosis scheme for parametric faults to a combined
parametric and discrete fault scheme. Second, to handle the
limited sensors and the fast transients in the ac subsystem, we
develop a new model-driven approach for deriving parametric
and discrete fault signatures for ac measurements. Third, we
develop a comprehensive methodology for combined diagnosis
of hybrid systems with dc and ac subsystems, using an exten-
sion of our previous diagnosability-based distributed diagnosis
methods from continuous systems [10] to hybrid systems.
We illustrate the effectiveness of our extended approach with
experimental studies conducted on the hardware testbed and
in a fully-developed simulation environment called VIRTUAL
ADAPT [7]. Much of FACT has been presented in previous
papers (e.g., [8]–[13]), so we briefly cover the previously
developed aspects of FACT, and only provide details that are
pertinent to the specifics of ADAPT. Our major technical focus
is on the new methods developed to address the challenges
specific to ADAPT, including extensions to discrete faults,
comprehensive diagnosis of dc and ac subsystems, and dis-
tributed diagnosis for hybrid systems.

The paper is organized as follows. Section II presents the
challenges that arise in diagnosing faults in ADAPT, and
how we approach them with FACT. Section III describes
our modeling scheme. Section IV discusses our approach to
monitoring complex hybrid system behaviors and online fault
detection. Section V describes our integrated framework for
diagnosis of the heterogeneous components of the ADAPT
testbed, and Section VI discusses the details of our online
fault isolation scheme. Section VII discusses our experimental
results, and Section VIII provides the conclusions and our

directions for future work on real-world diagnosis applications.

II. THE FAULT ADAPTIVE CONTROL TECHNOLOGY
TOOL-SUITE

The FACT tool-suite uses a model-integrated computing ap-
proach to automatically synthesize simulation models, hybrid
observers, and diagnoser code from hierarchical, component-
based, system models [8]. In this paper, we present a par-
ticular instantiation of the FACT architecture for diagnosis
in ADAPT. Although the tool-suite has been developed for
general engineering systems, we have customized particular
features and developed new methodologies to address specific
challenges. The run-time computational architecture of FACT
implemented for ADAPT is shown in Fig. 1. We assume u(t)
represents the inputs (controlled or otherwise) to the system
under diagnosis, and y(t) represents the system outputs. A
nonlinear observer, built using the component-based nominal
system model, is used to generate the residual signals for
the fault detection process by comparing actual and predicted
behavior. Statistically significant nonzero residuals, r(t), trig-
ger the symbol generator. Symbols sdc (corresponding to dc
measurements) and sac (for ac measurements) are input to
the qualitative fault isolation processes for the dc and ac
subsystems, implemented as a distributed isolation scheme.
Parameterized fault candidates may be fed into a fault iden-
tification unit to determine fault magnitude and for further
hypothesis refinement [9], [14].

A. Model Development
The ADAPT system schematic, shown in Fig. 2, illustrates

a typical functional representation of the power generation
(two battery chargers), power storage (three sets of lead-acid
batteries), and power distribution components (two inverters, a
number of relays and circuit breakers, and a variety of dc and
ac loads, including fans, lights, and pumps) of a spacecraft’s
electrical power system. Sensors measure voltages, currents,
temperatures, and frequencies (denoted in Fig. 2 using circles).
The system includes elements from the electrical, chemical,
mechanical, and hydraulic domains. Further, the system con-
tains over 50 switching elements, which implies that it can
potentially operate in over 250 distinct modes, and that the
system behavior is inherently hybrid. Therefore, we require
a modeling framework that can seamlessly integrate models
from various physical domains and concisely capture all
possible switching behaviors.

With large-scale systems like ADAPT, which contains over
170 components and over 220 possible individual faults,
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Fig. 2. Schematic diagram of ADAPT.

model development is a difficult, time-consuming task. We
alleviate this burden by utilizing a component-based modeling
approach that includes a library of parameterized component
models, which are then composed to form the complete system
model. Our modeling approach builds on the hybrid bond
graph (HBG) language [15]. The HBG language, described
in Section III, supports energy-based topological modeling of
physical processes in multiple domains using generic elements,
such as dissipators of energy (resistances), energy storage el-
ements (capacitors and inertias), and source elements (efforts,
flows) that represent inputs to the system. System components
are modeled as HBG fragments, which are connected through
energy and signal ports to define the complete system behavior.

In HBGs, switching is defined at the component level. The
use of localized switching functions avoids the state explosion
in model building for hybrid systems. Pre-enumeration of the
complete set of system modes is not required. For a particular
mode, the system equations can be derived automatically from
the model configuration and the constituent model for each
component based on causality, i.e., the preferred order for
computing the effort and flow variable values [16]. A large
number of discrete modes can be handled efficiently, because
we can systematically update the current models to those for
a new mode by exploiting efficient causality reassignment
procedures in HBGs [17].

Our modeling framework is implemented within a model-
integrated computing paradigm using the Generic Modeling
Environment (GME), which is a meta-modeling framework
for specifying domain-specific modeling languages [18]. We
construct system models using graphical interfaces provided
in GME, and design model transformations for automatically
synthesizing code for the components of the run-time applica-
tion. This approach greatly simplifies the entire development

process, from creating and testing the initial prototypes to
generating the diagnosers for the run-time environment. Fig. 3
overviews the set of model transformations. The graphical
model is transformed into a simulation model [17], which
can be used throughout the development and testing cycles.
Another transformation process generates a model file that
serves as input to the run-time application. At run-time, the
HBG model is reconstructed from the model file, and is auto-
matically transformed to (i) a set of state and output equations
for the hybrid observer [9], and (ii) the qualitative diagnosis
model, known as the temporal causal graph (TCG) [11]. The
system developer needs only to supply the HBG model of the
system. From this model, FACT can derive all the models it
requires for tracking and diagnosis, and synthesize the run-
time code. Customization and tuning are supported through
parameters associated with the software modules.

B. System Monitoring

A complete model-based approach to online diagnosis re-
quires methods for accurately tracking the dynamic system
behavior in the presence of modeling errors, measurement
noise, and disturbances in the system. A standard approach
for accomplishing this task is to use an observer, which
can accommodate model errors and measurement noise to
provide robust estimates of true system behavior. Along with
uncertainty and noise, monitoring behavior in ADAPT must
overcome additional difficulties, because the ac components
operate at 60 Hz, while the data acquisition system samples
the data at 2 Hz. Further, the sensors only measure rms and
phase values of the corresponding ac signals. To overcome
this, we design an extended observer that tracks the fast ac
behavior with relatively infrequent measurement updates. We
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Fig. 3. Model transformations in FACT.

do this using a scheme that updates the state estimates when
new measurements are made available, but simulates the ac
behavior in between updates at the required high rate. The
scheme is described in detail in Section IV.

Since ADAPT is hybrid, the observer must also handle
mode changes when tracking system behavior. We accom-
plish this by using an extended Kalman filter in conjunction
with an automaton to track the system modes. This hybrid
observer, constructed from the HBG model, is reconfigured
automatically when mode changes occur. This method has
been described in detail in previous work [9], and is described
briefly in Section IV.

Faults can be detected by comparing actual and estimated
system outputs, but measurement noise complicates this task.
In ADAPT, the measurements can be noisy, as shown in Table I
and the plots in Section VII. The amount of noise may also
vary in time, in particular, the battery voltage sensors exhibit
greater noise when the battery output voltage becomes low.
Noise in the signals requires the design of robust statistical
tests to determine the if a measurement hsa truly deviated
from its nominal value. We implement fault detection as a test
of statistical significance using the Z-test [19], coupled with a
sliding window technique [13]. Systematic analysis is required
to achieve the proper trade-off between sensitivity of detection
and false alarm generation. Fault detectors are tuned to adjust
sensitivity in order to minimize false alarms and missed
detections. For ADAPT, we customize our fault detectors to
have the highest sensitivity to faults without producing false
alarms. Implementation details of our fault detection scheme
have been described in [13], and are presented in Section IV
for completeness.

TABLE I
MEASUREMENT NOISE IN ADAPT

Sensor Type Standard Deviation of Noise
DC Voltage 0.0190 V
DC Current 0.0261 A
AC Voltage 0.0334 V rms
AC Current 0.0114 A rms
Phase 0.0016 rad
Rotational Speed 29.1370 RPM
Temperature 0.2904 ◦C

C. Fault Isolation

The faults considered for ADAPT cover a large subset of
faults observed in spacecraft power storage and distribution
systems [20]. Faults in ADAPT can manifest as abrupt faults,
i.e., unexpected, abrupt changes in system parameter values,
and discrete faults, i.e., unexpected changes in the operating
mode. Incipient faults may also occur, but we do not consider
them for this work. Faults may occur in sensors (e.g., additive
sensor bias), the process (e.g., a change in a resistance value),
or the actuators (e.g., stuck-at faults in relays). FACT imple-
ments the Hybrid TRANSCEND methodology that combines
qualitative and quantitative diagnosis for hybrid systems [9],
[11]. The approach originally addressed parametric faults, and
in recent work, motivated by ADAPT, it has been extended to
incorporate discrete faults [12]. These previously developed
methods, presented in Section V, can be applied directly to
the dc components of ADAPT.

However, transient analysis of fault signatures cannot be
directly applied to diagnosing faults in the ac components of
ADAPT, because a sampling rate of 2 Hz is too slow to capture
ac transients. Besides, the available ac sensors measure steady-
state rms and phase values of the ac signals. In this paper,
we extend our fault signature generation scheme to derive
steady-state fault signatures for ac signals given parametric and
discrete faults in ac components of the system. In addition, we
develop a methodology where the dc and ac diagnosers operate
independently in a distributed manner.

A distributed diagnosis scheme without centralized coordi-
nation provides additional advantages in reducing the com-
putational complexity and, therefore, improving the overall
scalability of the diagnosis process. In [10], we discuss our
approach to distributed diagnosis of continuous systems. In
this paper, we extend the approach to hybrid systems and apply
it to the ADAPT system, based on diagnosability analysis
of the hybrid system model. Section V discusses the details.
The extended diagnosis schemes and the distributed diagnosis
approach provide an innovative framework for developing a
comprehensive model-based diagnosis methodology for space-
craft power distribution systems, and allow us to perform dc
and ac diagnosis using two independent diagnosers.

III. MODEL DEVELOPMENT

Our component-based models of hybrid physical systems
are based on the HBG modeling language [15]. HBGs extend
bond graphs (BGs) [16], and are particularly suitable for
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diagnosis because they incorporate causal and temporal infor-
mation, along with the mode change information required for
deriving and analyzing fault transients. In BGs, components
are vertices, and bonds, drawn as half arrows, capture ideal
energy connections between the components. Associated with
each bond are two variables: effort, e, and flow, f , the product
of which defines the rate of energy transfer through the bond.
In the electrical domain, effort and flow map to voltage and
current, respectively. 1-junctions are analogous to series con-
nections (f values on incident bonds are equal and

∑
e = 0),

and 0-junctions are analogous to parallel connections (e values
on incident bonds are equal and

∑
f = 0). Component

behaviors are modeled as resistances, R, which capture en-
ergy dissipation in the system (e = Rf ); capacitances, C,
(ė = 1

C f ) and inductances, I , (ḟ = 1
I e), which capture energy

storage functions; and sources of flow, Sf , and effort, Se,
which model the flow of energy into and out of the system.
Nonlinearities are modeled by expressing system parameters
as functions of system variables using modulating elements.
The constituent equations of the BG elements define a set
of differential algebraic equations describing the continuous
system behavior.

HBGs introduce switching junctions, which act as ideal
switches in the model, enabling a junction to be in either
the on or the off mode of operation [15]. Off 1-junctions
behave as sources of zero flow. Similarly, off 0-junctions act
as sources of zero effort. When on, switching junctions behave
as normal junctions. The switching behavior is defined by a
control specification (CSPEC), modeled as a finite automaton,
whose state determines whether the junction is on or off [9],
[15]. The overall system mode is defined implicitly by the
individual states of all the CSPECs, and this provides a concise
representation of the hybrid system model.

Consider the example electrical circuit shown in Fig. 4. The
circuit consists of an ac source Se with voltage, v(t), resistors
R1 and R2, inductor L1, and capacitor C1. The series and
parallel connections in the circuit are captured using the 1-
and 0-junctions, respectively. The switch, Sw1, is modeled by
an ideal switching 1-junction, representing a series connection
that can be on or off. The switching junction is denoted
by the dashed arrow in Fig. 4b. The corresponding CSPEC
determines the state of the switching junction and is nominally
controlled by events Sw1 and ¬Sw1.

In this work, we focus on the diagnosis of single, persistent
faults in hybrid systems. We classify faults into two categories:
(i) parametric faults, and (ii) discrete faults. Parametric faults,
which represent partial failures or degradations in system
components, manifest as abrupt changes in the HBG model
parameter values. Discrete faults correspond to differences
between the actual and expected state of a switching compo-
nent in the HBG model, and are modeled using unobservable
fault events in the CSPECs that cause unexpected changes in
junction state [12]. For example, the Swon

1 and Swoff
1 events

in Fig. 4b correspond to stuck-on and stuck-off faults of Sw1

and unexpectedly change the state of the 1-junction associated
with the CSPEC.

The ADAPT model is a composition of component models
of the batteries, inverters, relays, circuit breakers, dc loads that

(a) Circuit schematic.

(b) Hybrid bond graph.

Fig. 4. Switched circuit example.

include simple circuits, and ac loads that include fans, pumps,
and light bulbs. The states of the various CSPECs establish the
different configurations of the system. From the HBG models,
we can derive a hybrid state-space formulation which forms
the basis for the hybrid observer and the parameter estimation
scheme, a reconfigurable block diagram which forms the basis
of our simulation models, and the temporal causal graph
(TCG), which forms the basis for performing qualitative fault
isolation from transients.

A. Generating Simulation Models

We use the HBG to automatically generate simulation
models of the system for offline diagnosis experiments. Each
mode of the HBG corresponds to a BG model that defines the
continuous behavior within a mode. The computational model
for each mode (e.g., state-space equations, block diagrams,
or signal flow graphs) can be derived systematically from
each BG model using well-defined methods [16]. We have
developed efficient methods for incrementally regenerating
the computational model after a mode change occurs [21],
which offer significant advantages for large hybrid systems
like ADAPT, because it avoids unnecessary pre-enumeration
of all system modes. Instead, the computational model is
reconfigured locally to the new mode. This scheme has been
used to develop the VIRTUAL ADAPT simulation testbed.

Parametric faults can be introduced into component simu-
lation models by specifying the time of fault occurrence, the
fault profile (in our case, abrupt), and the magnitude change
in the parameter value. Discrete faults are introduced by
specifying a particular discrete fault profile (e.g., uncontrolled
switching or stuck faults) at specific points in time. This
provides us with mechanisms for generating fault data sets for
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Fig. 5. Example TCG for the nominal mode where the switch is off.

experimental studies. In particular, faults which are dangerous
or impossible to inject in the actual hardware can be studied
using the simulation.

B. Temporal Causal Graphs

Our model for qualitative fault diagnosis, the temporal
causal graph (TCG), is derived from the HBG model of the
system for a given mode. The model explicitly captures the
propagation of both parametric and discrete fault effects on
other system variables, including measured variables [11],
[12]. The TCG is essentially a signal flow graph whose nodes
are system variables or discrete fault events. The labeled edges
represent the qualitative relationships between the variables,
i.e., equality (=), direct (+1) or inverse (−1) proportional-
ity, integral (dt), and parametric dependencies (e.g., 1/R1),
where changes in the involved parameters reflect parametric
faults. The algebraic relations imply instantaneous propagation
effects, whereas the integral edges imply a delay in the
propagation that manifest as higher-order effects (e.g., changes
in slope). Links from discrete fault events to variables may
have ±1 labels and additional N and Z labels, if the fault
causes the variable value to go from zero to nonzero (N )
or from nonzero to zero (Z). The directionality of the edges
is determined by causality, where the causal directions are
derived from the BG model [16].

The TCG for the circuit example is given in Fig. 5 for the
mode where the switch is off. It contains the system flow and
effort values in addition to an explicit value for the on/off
position of Sw1, p1. In this mode, the TCG must include
the discrete fault where the switch turns on unexpectedly
(represented by fault event Swon

1 ). If this fault occurs, then
the flow of current through the switch will go from zero to a
nonzero value, which then affects the values of other variables
in the system. A change in a parameter value caused by a
fault, e.g., R+

1 , cannot cause discrete changes between zero
and nonzero values.

IV. SYSTEM MONITORING

As discussed earlier, and illustrated in the architecture of
Fig. 1, the fault detector triggers the fault isolation and identi-
fication modules. The robust fault detection scheme combines
a hybrid observer for tracking nominal system behavior and a
statistical hypothesis testing scheme for robust fault detection.

A. Hybrid Observer

The hybrid observer combines the use of an extended
Kalman filter (EKF) for tracking continuous system behavior,
and automata for tracking the on/off mode of every switching
junction in the HBG model and transitioning to the new mode
when indicated by the CSPECs [9]. We assume that both
controlled and autonomous mode changes can be accurately
tracked under nominal system operation. Mode changes pro-
duce a reconfiguration in the HBG model. As a result, the
state-space equations are recomputed automatically, the EKF
equations are updated, and the tracking of continuous behav-
ior resumes. The EKF scheme assumes the modeling errors
and measurement noise are uncorrelated Gaussian with zero
mean, therefore, the two covariance matrices that represent the
modeling error and measurement noise are assumed to have
known variance values.

The observer receives updated measurements at a rate of
2 Hz. However, the system equations must be run at faster
rates to accurately simulate ac system behavior, due to the
controlled fast-switching behavior of the inverter [17]. Since
instantaneous ac current and voltage measurements are not
available at such rates, the observer can only update at the
rate of 2 Hz. To address this issue, we run the observer at the
rate required by the ac equations, but only perform the EKF
update at the 2 Hz rate, i.e., whenever new observations are
made available. All instantaneous measurements contribute to
the state update function in the EKF. For the ac subsystems,
the rms and phase sensor readings are based on computations
that take place over a window of samples, so they cannot
be directly used in the EKF update functions. Since EKF
updates are performed whenever new data is available, this
approach has the most utility. Also, faults occurring between
EKF updates that produce observable changes in rms and
phase measurements will still be detected.

B. Fault Detection

Our fault detection scheme employs an independent fault
detectors for each sensor. This allows each detector to be tuned
individually to achieve maximum sensitivity for a given signal,
and allows the fault detection task to be easily distributed
across large systems. For each measurement y(t), we define
the residual as r(t) = y(t)− ŷ(t), where ŷ(t) is the estimated
output signal generated by the hybrid observer. The fault
detection scheme employs the Z-test to look for nonzero
residual signals [13].

The Z-test requires that the sample mean and standard
deviation of a given population be known [19]. We estimate
the population standard deviation and sample mean using a
sliding window technique illustrated in Fig. 6. A small sliding
window (e.g., 5 samples), W2, is used to estimate the current
mean µr(t) of a residual signal:

µr(t) =
1
W2

t∑
i=t−W2+1

r(i).

The variance of the nominal residual signal, σ2
r(t), is computed

using a window W1 preceding W2, where W1 � W2 (e.g.,
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Fig. 6. Sliding windows in the fault detection scheme.

100 samples). W1 is offset by W2 by a buffer Wdelay (e.g.,
50 samples), to ensure that W1 does not contain any samples
after fault occurrence. The variance is computed as:

σ2
r(t) =

1
W1

t−W2−Wdelay∑
i=t−W2−Wdelay−W1+1

(r(i)− µ′r(t))2

where

µ′r(t) =
1
W1

t−W2−Wdelay∑
i=t−W2−Wdelay−W1+1

r(i).

Given a pre-specified confidence level, α, (e.g., 95%) tables
provide the bounds z− and z+ for a two-sided Z-test. The
thresholds for the fault-no fault decision, ε−r (t) and ε+r (t), are
computed as:

ε−r (t) = z−
σr(t)√
W2

+ E

ε+r (t) = z+ σr(t)√
W2

− E,

where E is a modeling error term. A computed mean value
µr(t) that lies outside of the thresholds at time t implies
a fault. In practice, parameters W1, W2, and Wdelay, the
confidence level α, and the modeling error term, E, of the
fault detector have to be tuned experimentally to optimize per-
formance, i.e., minimize false alarms while keeping detection
sensitivity high [13].

V. DIAGNOSER DESIGN

Our approach to diagnosing faults in power distribution
systems, such as ADAPT, combines schemes for diagnosis
from transients for dc measurements and changes in steady-
state values for ac measurements. We develop the system
diagnoser as two distributed diagnosers: (1) the dc subsystem
diagnoser, and (2) the ac subsystem diagnoser. The diagnoser
design is based on deriving fault signatures for the dc and ac
components of the system, and then performing diagnosability
analysis using the fault signatures.

A. Fault Signatures for DC Measurements

For the dc measurements, the fault signatures are derived
from the transients generated at the point of fault occurrence,
tf . Assuming that the system output is continuous and contin-
uously differentiable except at the points of fault occurrence
and mode changes, the transient response after abrupt fault
occurrence can be approximated by a Taylor series expansion,
which is defined by the changes in magnitude and higher order

TABLE II
FAULT SIGNATURES FOR DC MEASUREMENTS FOR THE CIRCUIT WITH

THE SWITCH ON

Fault VR1 IR2

C+
1 0+,X -+,X

C−1 0-,X +-,X
L+

1 -+,X 0-,X
L−1 +-,X 0+,X
R+

1 -+,X 0-,X
R−1 +-,X 0+,X
R+

2 0-,X -+,X
R−2 0+,X +-,X
Swoff

1 0-,X -*,Z

derivatives in the signal at tf [11], [14]. In TRANSCEND,
the fault signatures are expressed in a qualitative form: +
(increase), - (decrease), and 0 (no change) in the magnitude
and derivatives of the residual signal. If a fault produces an
immediate change in the residual, i.e., a discontinuity at tf ,
then the magnitude symbol is + or -, otherwise it is 0. Am-
biguity in a signature is denoted by the * symbol. In previous
work, we have shown that the first change and subsequent
slope provide all of the discriminatory evidence for qualitative
fault isolation in dynamic systems [14]. Therefore, our fault
signatures include two symbols: the magnitude change and
slope of the residual signal.

For discrete fault analyses, fault signatures have been ex-
tended to include a third symbol that indicates if a fault
causes a zero to nonzero or nonzero to zero value change in
measured from estimated values. Discrete faults cause mode
changes at junctions, and, as a result, variable values linked
to this junction may go from nonzero to zero abruptly (for a
junction turning off) or go from zero to nonzero abruptly (for a
junction turning on). The symbols N, Z, and X, represent zero
to nonzero, nonzero to zero, or no discrete change behavior
in the measurement from the estimate [12].

Fault signatures representing the transient behavior due to
parametric and discrete faults are defined as follows for our
three-symbol representation.

Definition 1 (Fault Signature from Transients). A fault signa-
ture for a fault, f , in a system mode, q, defines the qualitative
effect in magnitude, slope, and discrete change in measurement
m due to the occurrence of f .

Fault signatures are derived for each hypothesized fault f in
mode q by performing a forward propagation function on the
TCG [11], [12]. In the circuit example, we denote the mode
where the switch is off as q0 and the mode where the switch
is on as q1. Signatures for mode q1 are given in Table II,
assuming the voltage source is dc instead of ac, and variable
values are nominally positive, where the measurements are
the voltage across R1, VR1 , and the current through R2, IR2 .
For example, an abrupt increase in the value of C1, denoted
as C+

1 , will cause a smooth increase in VR1 and a transient
characterized by an abrupt increase and subsequent smooth
decrease in IR2. The table shows that the system is not
diagnosable with the selected measurements, because faults
in L1 and R1 cannot be distinguished in this mode.
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B. Fault Signatures for AC Measurements

Analyzing fault transients in the ac domain would require
sampling at rates much faster than 2 Hz, which would make
the diagnoser computationally infeasible. Besides, as discussed
earlier, we can only measure the rms and phase values of
the ac voltages and currents with a 2 Hz sampling frequency.
Therefore, from practical considerations, the ac fault signa-
tures represent steady state deviations in the measurements.
These fault signatures can be derived by computing the partial
derivative of the steady-state expression for a measurement
with respect to a given fault variable to determine the sign
of the measurement value change. In general, steady-state
signatures may result in large delays in detection and isolation,
however, in ADAPT, changes in rms and phase occur within
the 2 Hz sampling window, so there are no delays relative to
transient analysis for the dc measurements.

This analysis starts by deriving the symbolic expressions
relating faults to the measurements using the HBG model of
the system. The parameters for the R, C, and I elements are
replaced by their complex impedance representations in the ac
domain. Given the frequency, ω, in radians, the impedance of a
resistance, R, is ZR = R, a capacitor, C, is ZC = 1

jωC , and an
inductor, L, is ZL = jωL. By combining the constitutive rela-
tions of the elements and the junction equations derived from
the HBG, we can generate the voltage and current variable
relations in symbolic form. By algebraic manipulation, we get
the symbolic form of the expressions for the ac measurements
as a function of a given fault. After substituting nominal values
of all other parameters, if the sign of this partial derivative
is always positive (resp. negative) for the considered fault
magnitudes, then the corresponding fault signature is defined
to be a + (resp. -). If the sign cannot be uniquely determined,
the ambiguity is represented using the * symbol. Since discrete
faults represent changes in system mode, we determine the
signatures by simply computing the rms and phase values for
the different fault configurations, and then comparing them to
nominal configurations to compute the fault signatures for the
discrete faults.

Definition 2 (Fault Signature by Steady-state Analysis). A
fault signature for a fault, f , in a system mode, q, defines
the qualitative effect in magnitude and discrete change in
measurement m due to the occurrence of f .

To illustrate the approach, we consider the circuit of Fig. 4a.
The measured signals are the voltage across R1, VR1 , and the
current through R2, IR2 . The measurements include both rms
values and phase difference relative to the source voltage for
both measured signals. We assume that the source voltage v(t)
is 120 V rms at 60 Hz, and the parameters have nominal values
of C1 = 0.005 F, L1 = 0.03 H, R1 = 1 Ω, and R2 = 2 Ω.
We need to analyze the effects of faults in both system modes,
q0, where the switch is off, and q1, where the switch is on.
Using the HBG as described above, we derive the symbolic
expressions describing the measurements as a function of the

TABLE III
FAULT SIGNATURES FOR AC MEASUREMENTS FOR THE CIRCUIT WITH

THE SWITCH ON

Fault VR1 φVR1
IR2 φIR2

C+
1 -,X -,X -,X -,X

C−1 *,X +,X +,X +,X
L+

1 -,X -,X -,X -,X
L−1 +,X +,X +,X +,X
R+

1 +,X +,X -,X +,X
R−1 -,X -,X +,X -,X
R+

2 +,X -,X -,X -,X
R−2 -,X *,X +,X +,X
Swoff

1 -,X +,X +,Z -,Z

inputs and the impedances of the four components:

VR1 =
vR1

Zeq

IR2 =

 0, for mode q0
vZC1,R2

ZeqR2
, for mode q1

where

ZC1,R2 =
(
jωC1 +

1
R2

)−1

Zeq =
{

jωL1 +R1 + 1
jωC1

, for mode q0
jωL1 +R1 + ZC1,R2 , for mode q1.

These symbolic expressions for impedances are used to com-
pute the fault signature matrix for each mode.

The steady-state signatures for mode q1 are shown in Ta-
ble III. In some cases, the direction of change in measurement
values depends on fault magnitude. For example, C+

1 will
always cause a decrease in the rms value of VR1 , but C−1
may cause either an increase or decrease in VR1 depending
on its magnitude, as shown in Fig. 7. For its nominal value of
0.005 F, with an increase in C1, the measurement value always
decreases, but for a decrease in magnitude, the measurement
value may go above or below the nominal measurement value,
so we represent the signature in this case as a * (see Table III).
Discrete faults do not produce ambiguous signatures, because
we can always compute steady-state values in two separate
modes and determine the qualitative difference. For example,
when the switch is on, the rms value of IR2 is 2.83 A, and
when off, it is zero, therefore, when unexpectedly going from
q1 to q0, we will observe a decrease (-) in IR2 , and it will go
to zero (Z). This is represented by the fault signature -,Z.

C. Distributed Diagnoser Design

Distributed diagnosers partition the diagnosis task into
smaller subtasks, thus reducing the computational complexity
of the diagnosis algorithm [22]. In [10], we presented an
approach for designing distributed diagnosers for continuous
systems whose subsystem structure is given (Algorithm 1
in [10]). In this paper, we extend this approach to hybrid
systems, which allows us to decouple the diagnosers for the dc
and ac subsystems of ADAPT. Our objective is to decompose
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Fig. 7. VR1 rms value as a function of C1 magnitude in mode q1.

the overall diagnosis task into smaller subtasks performed
by local diagnosers such that the local diagnosers generate
globally correct diagnosis results while minimizing the number
of measurements communicated amongst the local diagnosers.

To generate distributed diagnosers for hybrid systems, we
require the fault signatures for each mode of the system,
and these are generated using the techniques discussed in
the previous section. Mode changes may occur during fault
isolation, so fault signatures for one mode interleaved with
fault signatures for another mode are possible, and these cases
must be accounted for because they affect the diagnosability of
the system [12], and, therefore, the diagnoser design process.
The traces formed by measurement deviations and mode
transitions can be represented as a finite automaton that maps
states to consistent fault hypotheses [23]; its construction is
omitted here for space, but is formed directly from the fault
signatures and mode change structure of the system. We denote
this finite automaton as DF,M,Q, where F is the set of all
possible faults, M is the set of all available measurements,
and Q is the set of all system modes.

We define a subsystem Si = (Fi,Mi), where Fi is the set
of faults in Si, and Mi is the set of measured variables in Si.
The separate Fi and Mi form partitions of the set of faults,
F , and measurements, M , respectively. Given κ subsystems,
Si = (Fi,Mi), 1 ≤ i ≤ κ, and DF,M,Q, our design problem is
to construct, for each subsystem, a measurement set M̃i ⊆M
such that (i) M̃i ⊇ Mi is minimal, and (ii) all single faults
in Fi are globally diagnosable by measurements in M̃i. We
define global diagnosability as follows.

Definition 3 (Global Diagnosability). A set of faults, Fi ⊆
F , is globally diagnosable by M̃i ⊆ M if M̃i can uniquely
isolate every fault, f ∈ Fi, from all other faults in F for every
possible sequence of mode transitions.

We apply this concept to the diagnoser design process as
follows. Each local diagnoser is characterized by a set of
faults Fi that it must diagnose. For its fault set to be globally
diagnosable given a set of measurements, the fault signatures
for these measurements must uniquely distinguish each fault in
Fi from each fault in the complete fault set F . If this condition
is satisfied for each local diagnoser, then this guarantees that
local diagnoses will be globally correct [10].

Given the set of available measurements, global diagnos-
ability is not always attainable in real-world systems, and,
in fact, we will show in Section VII that ADAPT is not
globally diagnosable. We first analyze the diagnosability of
the system. If the system is not globally diagnosable for
a set of measurements, we define the notion of aggregate
faults. An aggregate fault includes all single faults that are not
distinguishable from one other. Our diagnosis methodology
treats aggregate faults as single faults, and, as a result, the
reduced fault set is guaranteed to be globally diagnosable.

Given Fi and M̃i, we construct a local diagnoser [10],
D

Fi, M̃i,Q
, for each subsystem. By ensuring that each M̃i is

minimal, the local diagnosers share minimal information with
one another.

The procedure for designing diagnosers for a partitioned
hybrid system is presented as Algorithm 1. For each sub-
system Si, we assign to F ∗i the faults in Fi that are not
globally diagnosable using measurements in Mi. The search
for additional measurements is simplified by defining a notion
of proximity among subsystems, which is used to prioritize
the measurement selection process. We represent the system,
S, as a graph of connected subsystems. The proximity, d,
between subsystems Si and Sj , is defined as the minimum
path length from Si to Sj in the graph. If F ∗i is nonempty,
we start with a working measurement set M̃i initially equal to
Mi. The proximity bound, δ, starts at 1. We select additional
measurements from subsystems within this bound to reduce
the number of faults in F ∗i . The number is selected as to be
minimal while making the maximum number of faults in F ∗i
globally diagnosable. The set M̃i is expanded with these mea-
surements, and F ∗i is reduced to a smaller set. If F ∗i remains
nonempty, δ is incremented by 1, and the procedure is repeated
until F ∗i is empty, expanding the search to farther subsystems.
At this point, we have the local diagnoser D

Fi,M̃i,Q
. We will

present the results of this algorithm on ADAPT in Section VII,
where we partition the system into dc and ac subsystems.

The worst-case size of DF,M,Q is O(|M |!+ |Q|!), where Q
is the set of all modes [23]. Diagnosability can be checked with
a single pass over this structure, thus taking O(|M |! + |Q|!)
time. In the worst case, all measurement combinations must
be considered, which is O(2|M |) [10], where, for each com-
bination, diagnosability is checked, resulting in a total worst-
case complexity of O(2|M |(|M |!+ |Q|!)). Since the diagnoser
design is performed offline, the high complexity is acceptable.

VI. ONLINE FAULT ISOLATION

In this section, we describe the online fault isolation, which
consists of the symbol generation method and the online
signature matching scheme for qualitative fault isolation.

A. Symbol Generation

We define symbol generators independently for each sensor,
so that, as with fault detection, they can be individually tuned
and easily distributed. For each dc measurement, we extract the
magnitude and slope of the deviation, as well as the discrete
change feature. For each ac measurement, we use only the
first change and the discrete change behavior. The changes
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Algorithm 1 Partitioned System Diagnoser Design

Input: κ local subsystems, Si = (Fi,Mi), and DF,M,Q

for each Si do
identify F ∗i ⊆ Fi that are not globally diagnosable in DF,Mi,Q

δ ← 1
M̃i ←Mi

while F ∗i 6= ∅ do
identify measurement set M̂i from measurements of subsys-
tems Si at a distance d ≤ δ that isolates maximal F ′i ∈ F ∗i ,
and M̃i − M̂i is minimal
M̃i ← M̃i ∪ M̂i

F ∗i ← F ∗i − F ′i
if F ∗i 6= ∅ then
δ ← δ + 1

construct DFi,M̃i,Q

are abstracted symbolically to +, 0, -, N, Z, and X symbols,
and the computed symbols form the observed fault signatures
that are matched to predicted signatures during fault isolation.

A robust method based on the Z-test is used for computing
the symbolic features of the residual signal. If the measure-
ment residual, r(t), is greater than ε+r (t) (or less than ε−r (t)),
we assign a + (or -) to the magnitude value for the residual.

The calculation of the slope of a measurement deviation
starts with the estimation of the initial residual value, µr0(td),
at the time of fault detection, td, by computing the average of
the residual samples over a small window W3, i.e.,

µr0(td) =
1
W3

td+W3−1∑
i=td

r(td + i).

Again using the Z-test, the slope of the residual is determined
over another small, but larger window Wn (e.g., 15 samples)
after the end of the smaller window [13]. The mean value of
the residual after fault detection is given by:

µrd
(td+t) =


(

td+Wn−1∑
i=td

r(td + i)

)
Wn

− µr0 , Wn > W3

0, Wn ≤W3.

It is assumed that the variance of the residual does not change
due to the occurrence of the fault, i.e., σ2

r(t) = σ2
r(td) for all

t ≥ td. The variance of µrd
is σ2

rd
(td +t) ≈ σ2

r/Wn, while the
variance of µr0 is σ2

r0
≈ σ2

r/W3. That is, the uncertainty of
the initial residual value depends on the noise and W3, while
the uncertainty of the mean estimate depends on the noise
and the number of samples used in the calculations. Using a
confidence value α and the corresponding z+ and z− values,
the + slope symbol is generated when:

µrd
> z+σr

(
1√
W3

+
1√
Wn

)
+ Es,

where Es is a modeling error term. Similarly, the - slope
symbol is generated when:

µrd
< −z−σr

(
1√
W3

+
1√
Wn

)
− Es.

The size of the window used to calculate the mean, Wn, is
increased until the symbol is successfully generated, or Wn

becomes larger than a pre-specified limit, at which the slope
is reported as 0, implying that the true slope is either zero or
unknown but very small.

The generated symbols must be translated to observed fault
signatures, which requires discontinuity detection to determine
whether the generated magnitude symbol represents a disconti-
nuity or not. We assume that a discontinuity has occurred only
if the generated magnitude and slope symbols are different,
e.g., a generated magnitude symbol of + and a generated slope
symbol of - will be interpreted as a +- signature. In constrast,
if, for example, a + symbol is generated for both magnitude
and slope, we interpret this as a smooth increase, i.e., a
0+ signature. This methodology of discontinuity detection is
sufficient if the signatures ++ and -- cannot be observed.
This is typically the case, as these signatures imply unstable
systems.

To compute the discrete change symbol, we do not use the
residual, but use the observed and estimated values of the
signal. We compute the mean of the measured signal, y(t),
and the mean of the estimate, ŷ(t), over a small window, Wc:

µy(td) =
1
Wc

td+Wc−1∑
i=td

y(i)

µŷ(td) =
1
Wc

td+Wc−1∑
i=td

ŷ(i),

where td is the time of fault detection. We wish to determine
whether each signal belongs to a population with zero mean,
and choose the variance of the population to be the variance
of the residual defined by y(t) − ŷ(t), σ2

r(t), as a good ap-
proximation of the true variance of the zero-mean distribution.
Here, the thresholds are computed as:

ε+yd
= ε+ŷd

= z+σr(td)√
Wc

+ Ec

ε−yd
= ε−ŷd

= z−
σr(td)√
Wc

− Ec,

where Ec is a modeling error term. These thresholds are the
same as for fault detection, only they are computed for y(t)
and ŷ(t) rather than r(t). If µy(td) is outside its bounds, we
say it is nonzero, otherwise we say it is zero. Similarly, if
µŷ(td) is outside its bounds, we say it is nonzero, otherwise we
say it is zero. If the estimate is nonzero and the measurement
is zero, we report Z, and if the estimate is zero and the
measurement is nonzero, we report N, else, we report X.

B. Distributed Fault Isolation

Observed fault signatures computed using symbol genera-
tion are matched to predicted fault signatures to isolate faults.
Each local diagnoser, e.g., the dc and ac diagnosers, obtains the
symbols for its own sensors. Inconsistent faults are eliminated,
and consistent faults are retained. A globally correct diagnosis
result is reached when: (i) all measurements for a local
diagnoser have deviated and the fault hypothesis set is reduced
to a singleton fault set, or, (ii) a local diagnoser’s hypothesis set
is reduced to a singleton but all of its measurements have not
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deviated, and all other diagnosers produce a null hypothesis,
i.e., their candidate sets are empty [10].

Mode changes are handled using the approach presented
in [9]. If a controlled mode change occurs, such as a relay
turning on or off, the faults signatures for the new mode are
used, and consistent faults must match future measurement de-
viations for the current mode. If an inconsistency is obtained,
autonomous mode changes are hypothesized, such as circuit
breakers tripping, and consistent faults in the hypothesized
modes must match the observed measurement deviations.

VII. EXPERIMENTAL RESULTS

In this section, we present the experimental setup for
ADAPT, and demonstrate our diagnosis approach using exper-
iments performed in simulation, and experiments performed
using real test bed data.

A. Experimental Setup

The current testbed operational infrastructure, shown in
Fig. 8, contains a User component, which simulates a
crew member and provides commands to the testbed, an
Antagonist component, which injects faults and spoofs
sensor data sent to the User, and a Test Article com-
ponent, such as a diagnoser, which receives the data and
commands issued by the User and determines the health of
the system. The Observer component logs all system data
in order to evaluate the performance of the test articles. A
common communication interface between the testbed and the
various components is supported through a publish/subscribe
messaging server that operates at 2 Hz.

The Antagonist can inject discrete faults by blocking or
changing user commands to the testbed, and sensor faults by
spoofing sensor data. Only a subset of the faults can be injected
into the system, so the remainder of the faults are synthesized
using VIRTUAL ADAPT [7]. The Antagonist can use the
simulator to realistically spoof sensor data based on simulated
faulty scenarios. As indicated in Fig. 8, the simulation testbed,
which is implemented in MATLAB Simulink, uses external
wrappers to communicate to the messaging server of ADAPT.
By supporting the same interfaces as ADAPT, it functions as a
portable virtual version of the actual testbed that can be used
for diagnoser design and diagnosis experiments.

We choose a subset of ADAPT to demonstrate our approach
with both the simulation and the tesbed. This subset includes
one of the lead-acid batteries, one DC load, an inverter, and
two ac loads. The models of the dc components can be found
in [23], and the models of the ac components can be found
in [17]. A schematic of the subsystem is given in Fig. 9. The
battery acts as a direct non-ideal voltage source for the dc
load. The inverter connected to the battery produces a constant
120 V rms, 60 Hz, sinusoidal ac output when the input voltage
is in the range 21-32 V. When the voltage falls below 21 V,
the inverter shuts off automatically. The dc load connected
to the battery is purely electrical, while the ac loads include
a light bulb and a large fan. In addition, we also consider
three relays, one of which connects the dc load to the battery,
whereas the remaining two connect the ac loads to the inverter.

Fig. 8. Messaging architecture for ADAPT.

Fig. 9. Selected subset of ADAPT.

The available measurements include the rms values of inverter
voltage and current, Vrms and Irms, the phase difference
between the inverter voltage and current, φ, the temperature
of the light bulb, Tbulb, the rotational speed of the fan, ωfan,
the current through the dc load, IL1, and the battery voltage
and current, VB and IB .

We consider two subsystems (see Fig. 9), (i) the dc sub-

TABLE IV
FAULT SIGNATURES FOR THE MODE WITH ALL LOADS ON

Fault DC Measurements AC Measurements
VB IB IL1 Vrms Irms φ Tbulb ωfan

C−0 +*,X +*,X +*,X 0,X 0,X 0,X 00,X 00,X
R+

1 0-,X 0-,X 0-,X 0,X 0,X 0,X 00,X 00,X
R+

L1 0*,X -*,X -*,X 0,X 0,X 0,X 00,X 00,X
R−L1 0*,X +*,X +*,X 0,X 0,X 0,X 00,X 00,X
Swoff

1 0*,X -*,X -*,Z 0,X 0,X 0,X 00,X 00,X
R+

bulb 0*,X -*,X 0*,X 0,X -,X +,X 0-,X 00,X
R−bulb 0*,X +*,X 0*,X 0,X +,X -,X 0+,X 00,X
J−fan 0*,X +*,X 0*,X 0,X 0,X -,X 00,X -+,X
B+

fan 0*,X +*,X 0*,X 0,X 0,X +,X 00,X 0-,X

Swoff
2 0*,X -*,X 0*,X 0,X -,X +,X 0-,X 00,X

Swoff
3 0*,X +*,X 0*,X 0,X -,X -,Z 00,X 0-,X
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system, containing the battery, the dc loads, and Sw1; and
(ii) the ac subsystem, containing the inverter, the ac loads,
and Sw2 and Sw3. The dc subsystem fault list, Fdc, includes
changes in the dc load resistance, RL1, the battery capacitance,
C0, and internal battery resistance, R1, and faults in Sw1.
The dc measurements, Mdc, include IL1, VB , and IB . The
ac subsystem fault list, Fac, includes faults in the inertia and
resistance of the fan, Jfan and Bfan, the resistance of the light
bulb, Rbulb, and faults Sw2, and Sw3. The ac measurements,
Mac, include Vrms, Irms, φ, Tbulb, and ωfan.

Fault signatures for the mode with all loads online are given
in Table IV. We can see that the system is not globally diag-
nosable, because Swoff

2 and R+
bulb cannot be distinguished.

We form an aggregate fault from these two faults to apply
the diagnoser design algorithm described in Section V. Using
Algorithm 1, we obtain distributed diagnosers for the selected
subsystems, which naturally falls out of the decoupling of
the subsystems introduced by the inverter. The distributed
diagnoser for the ac subsystem does not require any additional
measurements from the dc subsystem to isolate its faults, i.e.,
M̃ac = {Vrms, Irms, φ, Tbulb, ωfan}. This is clear from the
signatures given in Table IV. If a dc fault occurs, no deviations
will be observed on any of the ac measurements, therefore, the
ac diagnoser will not isolate any dc faults.

The dc subsystem, on the other hand, does require ac
measurements to achieve unique isolation. Faults in the ac
subsystem also cause the dc measurements to deviate. To
overcome this ambiguity, the distributed diagnosis design
communicates the Irms measurement to the dc diagnoser.
Since dc faults do not change Irms, (due to the controlled
behavior of the inverter) the dc diagnoser eliminates all local
faults and determines the fault to be in the ac subsystem when
Irms deviates. If it does not deviate, the dc diagnoser will
isolate a dc fault, but the ac diagnoser will not since it will
not observe any deviations. Due to the automonmous mode
change behavior of the inverter, the dc diagnoser also requires
Vrms, because the ac measurements are affected by a dc fault,
if the fault is such that it causes the inverter to shut off. Hence,
M̃dc = {VB , IB , IL1, Vrms, Irms}. If a change occurs in Vrms,
then a subsequent change in Irms is explained by the inverter
shutting off, and not an ac fault.

B. Simulation Results

We first present diagnosis results obtained on the simulation
testbed VIRTUAL ADAPT. We used the simulation model to
provide the nominal reference for fault detection and symbol
generation. For this set of experiments, we inject faults into
the configuration where all loads are online. For the fault
detectors, we selected W1 = 5, W2 = 100, Wdelay = 50,
W3 = 3, Wn = 20, and α = 99.97%. We chose E = 0 for all
sensors except IB , where E = 0.2, and φ, where E = 0.0001.

The results are summarized in Table V. In the table, td is
the time taken to detect a fault, and ti is the time to isolate
the fault, which is given as the point at which a diagnoser last
reduces its fault set. All times in Table V are expressed in
seconds. In all cases, the correct fault was isolated. In some
cases, i.e., for C−0 and R+

1 , the slope had to be calculated,

TABLE V
SIMULATION DIAGNOSIS RESULTS

Fault DC Diagnoser AC Diagnoser
td ti Result td ti Result

C−0 ,−1% 0.5 12.0 {C−0 } N/A N/A ∅
R+

1 ,+200% 1.5 10.5 {R+
1 } N/A N/A ∅

R+
L1,+50% 0.0 4.5 {R+

L1} N/A N/A ∅
R−L1,−50% 0.0 4.0 {R−L1} N/A N/A ∅
Swoff

1 0.0 3.0 {Swoff
1 } N/A N/A ∅

R+
bulb,+50% 0.5 0.5 ∅ 0.5 0.5 {R+

bulb, Sw
off
2 }

R−bulb,−5% N/A N/A ∅ 1.5 1.5 {R−bulb}
J−fan,−50% N/A N/A ∅ 0.0 0.0 {J−fan}
B+

fan,+50% N/A N/A ∅ 0.5 4.0 {B+
fan}

Swoff
2 0.5 0.5 ∅ 0.5 0.5 {R+

bulb, Sw
off
2 }

Swoff
3 0.5 0.5 ∅ 0.5 0.5 {Swoff

3 }
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Fig. 10. R−bulb fault, where Rbulb decreases by 5%.

which took an additional amount of time. Note that the fault
R+

bulb, an increase in the bulb resistance, and Swoff
2 , a fault

where Sw2 is stuck off, could not be distinguished, which was
predicted using diagnosability analysis. In the following, we
step through the reasoning of the distributed diagnosers for
two interesting scenarios. Note that in each scenario, different
loads are turned on in sequence before the fault is injected.

The first scenario consists of a 5% decrease in the bulb
resistance, R−bulb, at 100 s. The relevant measurement plots
corresponding to this scenario are shown in Fig. 10. This
change results in an increase in the Tbulb at 101.5 s. Since only
R−bulb is consistent with the observed increase in Tbulb (see
Table IV), all other candidates are dropped by the ac diagnoser,
and a unique candidate is obtained. The dc diagnoser later
observes the increase in Irms, and since no faults in the dc
subsystem can cause an increase in the rms inverter current,
it eliminates all faults.

Next, we consider a 50% decrease in the Load 1 resistance,
R−L1, injected at 100 s. As shown in Fig. 11, this fault causes
the Load 1 and the battery currents to increase discontinuously.
Both changes are detected at 100.0 s, resulting in the dc
diagnoser generating {C−0 , R

−
L1} as the fault candidates. At

103.0 s, it is determined that neither measurement exhibited
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Fig. 11. R−L1 fault, where RL1 decreases by 50%.
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TABLE VI
TESTBED DIAGNOSIS RESULTS

Fault DC Diagnoser AC Diagnoser
td ti Result td ti Result

R+
L1,+100% 0.5 8.0 {R+

L1} N/A N/A ∅
R−L1,−33% 0.5 3.5 {R−L1} N/A N/A ∅
R+

bulb,+50% 1.0 1.0 ∅ 1.0 11.0 {R+
bulb, Sw

off
2 }

R−bulb,−50% 2.5 2.5 ∅ 2.5 2.5 {R−bulb, B
+
fan}

Swoff
2 0.5 0.5 ∅ 0.5 2.0 {R+

bulb, Sw
off
2 }

Swoff
3 0.5 0.5 ∅ 0.5 1.5 {Swoff

3 }
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Fig. 12. R+
L1 fault, where RL1 increases by 100%.
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Fig. 13. Swoff
2 fault.

any discrete change behavior, which does not affect the current
candidate list. At 104.0 s, it is determined that the change in
IB is a discontinuity, and that VB decreased. The fault C−0 is
dropped since it would cause instead a battery voltage increase,
so R−L1 is isolated as the true fault.

We have also studied in simulation the effect of fault
magnitude and sensor noise on fault detection times and the
fault isolation results. With R−L1, for example, the fault was
detected in less than 0.5 s, on average, for magnitudes of at
least 5% with the selected levels of noise. Full details for faults
in an extended dc subsystem can be found in [23].

C. Testbed Results

We have also performed experiments on the ADAPT
testbed. Due to model uncertainty, the E values for some fault
detectors had to be increased, resulting in slower detection
and isolation times as compared to the simulation. For IL1

and Irms, E = 0.1; for Tbulb and φ, E = 1.3; and for Vrms,
E = 1.0. Full results are provided in Table VI. Additional
experiments for only dc components are provided in [23]. In
most of the experiments, we achieved unique isolation when
possible. The one exception is R−bulb, in which the changes
in Irms and Tbulb were too small to be detected. Future
experiments will include our fault identification methods to
resolve ambiguities remaining from the qualitative fault isola-
tion stage. To demonstrate the diagnosis approach, we describe
two scenarios: a load fault and a switch fault.

First, we consider a 100% increase in the Load 1 resistance,
R+

L1, injected manually at 100.0 s in the mode with all

loads on. The measured and estimated outputs are shown in
Fig. 12. The increase in resistance causes a discontinuous
drop in the current, detected at 100.5 s. Since the slope
has not yet been computed, the possible fault candidates are
{R+

1 , R
+
L1, Sw

off
1 }. At 102.5 s, the increase in VB is detected,

thus eliminating R+
1 . At 103.5 s, it is determined that IL1 did

not go to zero, thus eliminating Swoff
1 , and isolating R+

L1 as
the true fault. None of the measurements in the ac subsystem
deviate, so the ac diagnoser does not generate any candidates.

We next consider a discrete fault where Sw2 turns off
at 100.0 s. The relevant measured and estimated outputs
are shown in Fig. 13. At 100.5 s, an increase in VB is
detected, so the dc diagnoser generates its initial candidates as
{C−0 , R

+
L1, R

−
L1
, Swoff

1 }. Also at 100.5 s, a decrease in Irms

is detected, so the initial candidates of the ac diagnoser are
{R+

bulb, Sw
off
3 , Swoff

2 }. Because this measurement is known
to the dc diagnoser, it can eliminate all of its faults and
conclude that the fault must be in the ac subsystem. At
101.0 s it is determined that the change in VB was not a
discontinuity, but the ac diagnosis remains unchanged. At
102.0 s, an increase in φ is detected, which reduces the fault
set to {Swoff

2 , R+
bulb}, which cannot be distinguished further,

as explained earlier.

VIII. CONCLUSIONS

Applying model-based diagnosis techniques to real-world
systems engenders many challenges, especially those associ-
ated with model development, system monitoring, and fault
isolation. These challenges were faced when applying FACT to
ADAPT. The modeling task is complicated because details of
component models are often unavailable, interactions between
components are not fully documented, and sufficient data may
not be available to estimate the parameters of the model. We
faced these issues when modeling a number of components
of the ADAPT system, especially the battery, inverter, fan,
and pump. These modeling issues translate to challenges in
system monitoring due to model uncertainty, as well as sensor
noise and a lack of certain sensors that would simplify the
diagnosis task. With a limited sensor set, fault isolation is
also difficult, especially since ac and dc subsystems behave at
vastly different time scales.

Other diagnosis approaches have also been applied to
ADAPT. A convex optimization approach is employed in [24],
but considers only faults in the dc subsystem. In [25], ADAPT
is modeled using Bayesian networks on a quantized state
space of low granularity. Such quantizations may be unable
to detect subtle faults, such as changes in battery capacitance,
that a more detailed model would provide. More general
approaches to hybrid systems diagnosis may also be applied,
although most of them consider only discrete faults, such
as the estimation-based approaches of [26], [27], whereas
our approach addresses both parametric and discrete faults.
Notable exceptions that do address combined parametric and
discrete fault diagnosis are the application-specific approach
of [28], which models systems using hybrid automata, and
the parity relations approach of [29], which does not easily
extend to nonlinear systems with multiplicative faults. A
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related approach to [29] is that of [30], which also uses parity
relations, and incorporates discrete-event system techniques.

Perhaps most importantly, our FACT tools greatly facilitate
synthesizing the different modules of the diagnosis system.
However, setting the parameters of the observer and fault
detectors are also critical tasks for accurate system monitoring,
avoiding false alarms, and correct symbol generation. Coming
up with the right parameter values involves running a number
of systematic experiments. In some cases it is hard to guarantee
false alarm rates because the nature of the modeling errors and
measurement noise may be unknown. In our work, assuming
Gaussian distributions and estimating the measurement noise
variance online has worked well.

To manage specific challenges of ADAPT, we extended
our traditional hybrid diagnosis approach to include steady-
state analysis for ac systems, which provided us with fault
signatures for ac and dc sensors. Based on the signatures, we
performed diagnosability analysis of the system and designed
distributed diagnosers for the heterogeneous dc and ac sub-
systems. In future work, we will perform additional online
experiments to test our fault detection and symbol generation
strategy for a sensitivity to a variety of fault magnitudes under
multiple sensor noise profiles. We are also improving our fault
identification scheme for use on ADAPT, and would like to
provide confidence estimates when multiple candidates are
retained after fault isolation. As part of ongoing work, we
are also further extending our methods to deal with incipient
faults [31] and multiple faults [23].
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