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The operations of a planetary rover depend critically upon

the amount of power that can be delivered by its batteries. In

order to plan the future operation, it is important to make re-

liable predictions regarding the end-of-discharge time, which

can be used to estimate the remaining driving time and dis-

tance. These quantities are stochastic in nature, not only be-

cause there are several sources of uncertainty that affect the

rover’s operation, but also since the future operating con-

ditions cannot be known precisely. This paper presents a

computational methodology to predict these stochastic quan-

tities, based on a model of the rover and its batteries. We uti-

lize a model-based prognostics framework that characterizes

and incorporates the various sources of uncertainty into these

predictions, thereby assisting operational decision-making.

We consider two different types of driving scenarios, and

develop methods for each to characterize the associated un-

certainty. Monte Carlo sampling and the inverse first-order

reliability method are used to compute the stochastic predic-

tions of end-of-discharge time, remaining driving time, and

remaining driving distance.

1 Introduction

Robots are used to facilitate automation in several in-

dustrial, mechanical, and aerospace applications [1, 2].In

planetary exploration, rovers must have the capability to

autonomously perform path planning [3, 4], fault mitiga-

tion [5, 6] and mission re-routing [7, 8]. In this context, it

is important to predict how much longer the rover can be op-

erated, i.e, what is the time until the end-of-discharge (EOD)

of the batteries powering the rover, and the corresponding

remaining driving time (RDT) and/or the remaining driv-

ing distance (RDD) [9], by anticipating the future operat-

ing demands on the rover. Research in the topic of prognos-
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tics [10–12] has focused on developing computational meth-

ods for predicting the future behavior of engineering com-

ponents, subsystems, and systems, and this paper focuses on

applying these methods to planetary rover operations.

This paper uses model-based prognostic methods [13–

15] (as against data-driven approaches [16, 17] that mainly

rely on the presence of large failure data sets) to solve the

prediction problem by first estimating the system state, and

then simulating it forward in time until a predefined event oc-

curs. This event may relate to the violation of certain usabil-

ity, safety, and/or serviceability constraints (such as reach-

ing the end-of-discharge of a battery [18, 19]). Prediction of

the future system behavior is affected by several sources of

uncertainty; therefore, a rigorous approach for prognostics

needs to systematically account for these sources of uncer-

tainty and quantify their effect on the desired predictions.

Due to the presence of uncertainty, the system evolution is

a random process. A systematic approach to prognostics,

therefore, needs to address two important issues: (i) to iden-

tify and characterize the various sources of uncertainty, and

(ii) to quantify the combined effect of the different sources

of uncertainty within the prediction and thereby compute the

prediction uncertainty.

Some common sources of uncertainty in model-based

prognostics include state estimation uncertainty, model un-

certainty, and future input (loading, environmental, and us-

age conditions) uncertainty. While state estimation uncer-

tainty and model uncertainty can be reduced by using better

sensors, robust state estimators, and improved models, fu-

ture input uncertainty is practically irreducible since it is al-

most impossible to precisely predict the future loading con-

ditions for many practical engineering systems. Uncertainty

regarding future inputs is, in fact, typically the most signifi-

cant source of uncertainty [15, 20–22].

Once each source of uncertainty has been characterized

and quantified, it must be accounted for within the prediction



procedure, and thereby, the overall prediction uncertainty

needs to be computed. In previous work [23], we explained

that such a prediction problem is, fundamentally, an uncer-

tainty propagation problem and investigated different types

of sampling-based methods [18] and analytical methods [24]

for this purpose. We also investigated future input character-

ization [25] for the power system of a rover, and compared

different methods for EOD prediction.

While most prior work was performed only in the con-

text of component-level prognostics, this paper focuses on

the operations of a planetary rover, and we develop a generic

model-based prognostics framework [14] that systematically

incorporates system-level information. We predict the EOD,

RDT, and RDD of a planetary rover. While EOD only indi-

cates how much time is left until the battery discharges, RDT

indicates how much of that time is actually spent driving

the rover, and RDD indicates how much distance the rover

may travel until EOD. All of these quantities are related, and

are determined by the commanded speeds and correspond-

ing power requirements of the rover. Operationally, RDT

and RDD are more meaningful than EOD, because they are

explicitly related to the driving of the rover. We consider two

different driving scenarios that require different future input

characterization and prediction methods: unstructured driv-

ing and structured driving. Unstructured driving describes a

free driving scenario by considering a set of unplanned ma-

neuvers: “going straight”, “turning”, and “stopping”, each

with stochastic duration and power demands. Here, we use

Monte Carlo sampling. In constrast, in structured driving,

a set of waypoints must be traversed at specific speeds until

EOD. Here, we use the inverse FORM approach. In both sce-

narios, we quantify the uncertainty in the inputs to the rover,

and use this information to compute the uncertainty in EOD,

RDT, and RDD.

The rest of this paper is organized as follows. Sec-

tion 2 defines the prognostics problem and discuss the vari-

ous sources of uncertainty in prognostics. Section 3 presents

the modeling aspects of the rover and explains the two driv-

ing scenarios in detail. Sections 4 and 5 discuss the estima-

tion and prediction methodologies, while Section 6 presents

numerical results. Finally, Section 7 concludes the paper and

discusses possible directions for further research.

2 Model-based Prognostics

In this section, we discuss the general problem of model-

based prognostics, discuss the importance of uncertainty in

prognostics, develop a new approach for uncertainty repre-

sentation, and finally, present a computational architecture

for prognostics under uncertainty.

2.1 Formal Definition of Prognostics

Consider a system that is represented using a generic

state-space model, as:

x(k+ 1) = f(k,x(k),θ(k),u(k),v(k)), (1)

y(k) = h(k,x(k),θ(k),u(k),n(k)), (2)

where k is the discrete time variable, x(k) ∈ R
nx is the

state vector, θ(k) ∈ R
nθ is the unknown parameter vector,

u(k)∈Rnu is the input vector, v(k)∈Rnv is the process noise

vector, f is the state equation, y(k) ∈R
ny is the output vector

(corresponding to the system sensors), n(k) ∈R
nn is the sen-

sor noise vector, and h is the output equation.1 The unknown

parameter vector θ(k) is used to capture explicit model pa-

rameters whose values are unknown and time-varying.

In prognostics, we are interested in predicting the occur-

rence of some event E that corresponds to the violation of

certain performance, usability, safety, and/or serviceability

constraints. We define the event E as the earliest instant that

some event threshold, that is a Boolean function of the states,

parameters, and inputs of the system, TE :Rnx×R
nθ×R

nu→
B, where B, {0,1}, changes from the value 0 to 1 [14]. Let

kE denote the time at which the event E occurs, and let kP

denote a generic time at which it is desired to perform pre-

diction. Then, kE is defined as a function of kP, as:

kE(kP), inf{k ∈ N : k ≥ kP∧TE(x(k),θ(k),u(k)) = 1}. (3)

Note that kE is an explicit function of the time of prediction

kP, since the time-to-event E depends on the state estimated

at kP and anticipated future conditions (∀k > kP). The time

remaining until the occurrence of that event E , denoted by

∆kE , is defined as:

∆kE(kP), kE(kP)− kP. (4)

We are interested in predicting kE and the values of de-

sired system-level variables, z, at time kE , which are defined

as a function of the state, parameters, and inputs using g:

z(k) = g(k,x(k),θ(k),u(k)). (5)

As shorthand, we use zE(kP) to refer to z(kE(kP)), i.e., the

prediction of z(kE) at prediction time kP. We may also be

interested in the difference in these quantities from the time

of prediction kP, i.e.,

∆zE(kP) = zE(kP)− z(kP). (6)

The system evolution is a random process due to the pro-

cess noise v(k) and nondeterministic inputs u(k). In addi-

1Bold typeface denotes vectors, and n denotes the length of a vector a.



tion, the state and parameter values are not known exactly,

and so only uncertain estimates can be derived. At the time

of prediction kP, the predicted quantities kE(kP), ∆kE(kP),
zE(kP), and ∆zE(kP) can each be mathematically expressed

as a function of the following quantities, all of which are un-

certain [18, 24]:

1. the values of the state variables at kP, x(kP);
2. the model parameter values from time kP until kE , a

time-trajectory ΘkP
= [θ(kP) θ(kP + 1) . . . θ(kE)];

3. the system inputs from time kP until kE , a time-trajectory

UkP
= [u(kP) u(kP + 1) . . . u(kE)]; and

4. the process noise values from time kP until kE , a time-

trajectory denoted by VkP
= [v(kP) v(kP+1) . . . v(kE)].

So, the prediction problem is to compute the probability

distributions of kE(kP), ∆kE(kP), zE(kP), and ∆zE(kP), using

estimated probability distributions for x(kP), ΘkP
, UkP

, and

VkP
and the model that includes f, g, and TE .

2.2 Representing Uncertainty in Prognostics

In order to solve the prediction problem, the first step

is to quantify and appropriately represent the uncertainty in

each of the uncertain inputs. Let p(x(kP)), p(ΘkP
), p(UkP

),
and p(VkP

) denote their respective probability distributions.

Representing p(x(kP)) is straightforward, often cap-

tured through the mean and the covariance of the multi-

dimensional state-space, but, in general, representing the

trajectories is more difficult. One can always represent

the distribution of these trajectories directly, but when that

becomes difficult, the concept of surrogate variables can

be used [25]. Surrogate variables are used to transform a

time-varying stochastic process into a combination of time-

invariant random numbers and a deterministic (non-random),

time-varying function; the former random numbers serve as

parameters of the function, thereby constituting a set of ran-

dom trajectories. The time-invariant random numbers are re-

ferred to as the surrogate variables. A similar concept has

been used in stochastic processes, for instance, in Karhunen-

Loeve expansion [26], where the eigenvalues of the autocor-

relation function are chosen as “surrogate variables” that can

represent the time-varying stochastic process.

For describing the probability distribution of a generic

trajectory Ak, we introduce a finite set of surrogate random

variables λa = [λa,1 λa,2 . . . λa,m]. We describe a trajec-

tory using λa and instead define p(λa), which in turn de-

fines p(Ak) through some function fa(k,λa). The surrogate

variables, λa, and the function fa can be defined to describe

trajectories in a variety of ways. The use of the surrogate

variables provides flexibility to the user in defining the dis-

tribution of trajectories.

2.3 Prognostics Architecture

We adopt a model-based prognostics architecture [14],

in which there are two sequential problems, (i) the esti-

mation problem, which requires determining a joint state-

parameter estimate, p(x(k),θ(k)|y(k0:kP)), based on the

history of observations up to time k, y(k0:kP); and (ii)

the prediction problem, which, at a specified prediction

time, kP, using estimates of p(x(kP)), p(ΘkP
), p(UkP

), and

p(VkP
), computes p(kE(kP)|y(k0:kP)), p(∆kE(kP)|y(k0:kP)),

p(zE(kP)|y(k0:kP)), and/or p(∆zE(kP)|y(k0:kP)).

The prognostics architecture is shown in Fig. 1. In

discrete time k, the system is provided with inputs u(k)
and provides measured outputs y(k). The estimation mod-

ule uses this information, along with the system model, to

compute an estimate of the states and parameters at time

k, p(x(k),θ(k)|y(k0:k)). At time kP, the prediction module

uses this information along with the information regarding

future input, parameter, and process noise trajectories rep-

resented using the surrogate variables, p(λθ), p(λu), and

p(λv), to compute p(kE(kP)|y(k0:kP)), p(∆kE(kP)|y(k0:kP)),
p(zE(kP)|y(k0:kP)), and/or p(∆zE(kP)|y(k0:kP)).

The estimator solves the problem of representing the

probability distribution for x(kP).

For the future input trajectories, the probability distri-

bution depends on the particular system under consideration

and the environment it is operating within. As with the other

trajectories, we describe p(UkP
) using surrogate variables,

λu. Often, there is some knowledge about what the future

input will be and only a few random variables are needed in

λu. For example, in a constant-loading scenario with a sin-

gle input, the input trajectory can be defined using a single

surrogate variable, i.e., u(k) = λu,1 for k ≥ kP.

In order to account for process noise, we define p(Vk)
using λv. Typically, this quantity is represented as white

noise and needs to be sampled at every time-instant. Al-

ternatively, an equivalent time-invariant process noise, i.e.,

a single random variable that defines a constant value of pro-

cess noise for all k [27], can be computed using the principle

of likelihood and used in analysis.

3 Rover Modeling for Prognostics

Prior to the application of the above generic framework

for prognostics and uncertainty quantification, it is necessary

to understand the physical system of interest, and develop ap-

propriate models. In this paper, we consider a four-wheeled,

skid-steered rover, powered by a set of lithium-ion batter-

ies [28]. We are interested in predicting the time of EOD, and

the corresponding RDT and RDD. In order to predict these

quantities, we need to develop a model that describes the

relationship between the rover inputs, i.e., the commanded

wheel speeds, and the battery voltage, driving time, and driv-

ing distance. This model is described first in Section 3.1.

In order to make predictions, we must also develop mod-

els of the uncertain inputs to the prediction problem. That is,

we need to determine appropriate and accurate descriptions

of the distributions of the future trajectories, p(ΘkP
), p(UkP

),
and p(VkP

). Section 3.2 describes these for both structured

and unstructured driving scenarios.

3.1 System Modeling

As part of the modeling process, the states (x), the model

parameters (θ), the model inputs (u), the model outputs (y),
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Fig. 1. Model-Based Prognostics Architecture

the state equation (f), the output equation (h), the event of

interest (E), the threshold function (TE), the additional quan-

tities of interest (z), and the equation used to compute them

(g) must all be defined.

The system inputs, u, are defined by the velocities of the

four wheels: the front-left wheel speed, vFL; the front-right

wheel speed, vFR; the back-left wheel speed, vBL; and the

back-right wheel speed, vBR. As a control policy, we have

the following constraints:

vL = vFL = vBL, (7)

vR = vFR = vBR, (8)

where vL is the left-side velocity and vR is the right-side ve-

locity; in other words, we always control the wheels on one

side of the rover to the same speed. Therefore, we consider

only vL and vR as the independent system inputs:

u(t) =
[

vL vR

]T
. (9)

We have also the following kinematic constraints:

v =
vL + vR

2
, (10)

ω =
vR− vL

2b
, (11)

where v is the rover translational velocity, and ω is the rover

rotational velocity. Here, b is the distance from the rover lon-

gitudinal axis to the wheels. Adopting a Cartesian coordinate

system, it follows that

ẋ = vcosθ, (12)

ẏ = vsinθ, (13)

θ̇ = ω. (14)

Fig. 2. Battery equivalent circuit

The driving distance d and driving time are described by:

ḋ = v, ṫd = (v > 0). (15)

Required power is computed as an empirical function of

v, vL, and vR (determined from data):

P = 4.44v+ 69.54(vL− vR)
2 + 1.55, (16)

where velocity is expressed in m/s and power in W. Note that

power increases with the overall velocity, but increases also

with differences in left- and right-side velocities, i.e, turning

requires more power than moving straight (due to increased

friction encountered when turning). When the rover is not

moving, a small amount of power (1.55 W) is required to

keep the components powered.

The rover is powered by two parallel sets of 12 lithium-

ion batteries in series, which we lump into one single ab-

stracted battery. We employ an extended version of the

equivalent circuit battery model presented in [18]. While

more complex battery models are available, equivalent cir-

cuit models provide a desirable trade off between execution

speed and accuracy [29–31]. The schematic for the equiva-

lent circuit model is shown in Fig. 2, and the equations are

summarized in Table 1. We briefly describe the model here,

and refer to [18] for additional details.

The large capacitance Cb holds the charge qb of the bat-

tery. The nonlinearCb captures the open-circuit potential and

concentration over-potential, and Cb is a nonlinear function



Table 1. Battery Model Equations

i = P/V

ip =
Vp

Rp

ib = ip + i

isp = ib−
Vsp

Rsp

is = ib−
Vs

Rs

Vb =
qb

Cb

Vsp =
qsp

Csp

Vs =
qs

Cs

Vp = Vb−Vsp−Vs

V = Vb−Vsp−Vs

q̇b = −ib

q̇sp = isp

q̇s = is

SOC = 1−
qmax−qb

Cmax

Rsp = Rsp0
+Rsp1

exp
(

Rsp2
(1−SOC)

)

Cb = Cb0
+Cb1

SOC+Cb2
SOC2 +Cb3

SOC3

Table 2. Battery Model Parameters

Parameter Value Parameter Value

Cb0
312.43 F Csp 2.47 F

Cb1
346.65 F Rsp0

0.42 Ω

Cb2
0.20 F Rsp1

9.×10−17 Ω
Cb3

−38.33 F Rsp2
37.22

Rs 0.32 Ω qmax 1.57×104 C

Cs 39.06 F Cmax 15,554 C

Rp 1×104 Ω VEOD 30.00 V

of state-of-charge (SOC) [32]. The Rsp-Csp pair captures the

major nonlinear voltage drop due to surface over-potential,

Rs captures the Ohmic drop, and Rp models the parasitic re-

sistance that accounts for self-discharge. Rsp is also a non-

linear function of SOC, increasing exponentially as SOC de-

creases (Rsp0
, Rsp1

, and Rsp2
are empirical parameters). SOC

is computed based on the amount of charge in the battery,

qb, the maximum possible charge, qmax, and the maximum

possible capacity, Cmax. The parameter values of the bat-

tery model are given in Table 2. All voltages are given in

Volts, resistances in Ohms, charges in Coulombs, and capac-

itances in Farads2. The model is implemented considering a

discrete-time version with a time step of 1 s.

The complete state vector is:

x =
[

x y θ d td qb qsp qs

]T
. (17)

We assume that all parameters are known, so θ = ∅. The

available measurements include the battery current and volt-

2Note that Cb0
, Cb1

, Cb2
, and Cb3

are simply fitting parameters and do

not have physical meaning.

age:

y =
[

i V
]T

. (18)

The event E that we want to predict is EOD, and TE is

specified using a voltage threshold, VEOD. Specifically, we

define TE as:

TE = (V <VEOD). (19)

For prediction purposes, we define z as:

z =
[

d td
]T

. (20)

3.2 Uncertainty Modeling

While the uncertainty in the state estimates, i.e.,

p(x(kP)), will be directly provided by the state estimation

algorithm, the probability distributions for future trajecto-

ries p(ΘkP
), p(UkP

), and p(VkP
) must all be defined. In our

system, all parameters are assumed to be known, and so the

probability density function p(ΘkP
) need not be considered.

Further, in this application, we observe that the effect of pro-

cess noise is negligible relative to the uncertainty in future

inputs (such conclusion is arrived based on sensivitity anal-

ysis, as explained later in this paper), so we also do not con-

sider p(VkP
). On the other hand, output measurement data

may be subject to sensor errors (n), and such errors are as-

sumed to Gaussian (mean and covariance are estimated from

data). The most challenging aspect of uncertainty modeling

is the characterization of p(UkP
). This probability distribu-

tion should incorporate as much as possible any knowledge

about how the rover will be driven in the future, and so de-

pends on the particular driving scenario under consideration.

The navigation of a rover depends on several factors

such as the mission goals, ground terrain, desired naviga-

tion speed, etc. Our prediction model requires defining the

wheel speed inputs, which in turn defines the battery power

consumed, and, ultimately, when EOD will occur. The com-

manded wheel speeds depend, obviously, on the type of driv-

ing scenario being considered. In this paper, we consider

two different types of driving scenarios: unstructured driv-

ing, and structured driving. Unstructured driving refers to

free driving of the rover by an unplanned sequence of ma-

neuvers, either by an operator or autonomously. Structured

driving refers to the situation where the rover needs to nav-

igate through a predetermined set of waypoints in an open

terrain. We must transform information regarding these two

scenarios into future commanded wheel speeds, vL(k) and

vR(k), in order to quantify the uncertainty in UkP
.

3.2.1 Unstructured Driving

In unstructured driving, the rover may take one of the

following three maneuvers:
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Fig. 3. Rover path for structured driving.

1. Straight: when vL = vR 6= 0;

2. Turning: when vL 6= vR, for vL > 0 and vR > 0; and

3. Stopping: when vL = vR = 0, and P > 0 but small.

We assume that in each maneuver segment, the com-

manded wheel velocities remain constant. So, the surrogate

variables include the maneuvers, their time durations, and the

wheel speeds. For each maneuver, we must sample a time

duration and either zero, one, or two different wheel speeds,

for stopping, straight, and turning maneuvers, respectively.

We first sample the maneuver and its time duration, and then

the appropriate number of commanded speeds. So, we need

to specify distributions for the maneuver selection, the time

duration, and the wheel speeds conditioned on the selected

maneuver. From these surrogate variables, we can construct

completely the trajectories for vL and vR.

From past unstructured driving scenarios, we can esti-

mate the discrete probability distribution for maneuver se-

lection, the probability distribution for mauever duration, and

for each manuever, the probability distributions for the wheel

speeds.

3.2.2 Structured Driving

In structured driving, the rover is required to traverse a

predetermined sequence of waypoints. Between each pair

of waypoints in the sequence, the rover is commanded to go

one of three speeds, SL, SM , and SU , representing slow speed,

normal speed, and fast speed, respectively. A sample set of

waypoints and the associated rover path are shown in Fig. 3.

For structured driving, the trajectories for vL and vR are

ultimately determined from the waypoints. As it is clear from

the figure, the rover does not take a straight path from one

waypoint to the other. This is because, in reality, the rover is

controlled to maintain a given forward speed while turning

towards the desired waypoint. As a result, (i) the actual path

taken between two sequential waypoints is curved, and the

distance traveled is actually larger than the straight-line dis-

tance between the waypoints, and (ii) since the rover requires

more power to turn than to move forward (see Eq. 16), the

power used when going between two sequential waypoints

is not constant.

To simplify the problem, we transform to an equiva-

lent set of waypoints placed along the same axis, for which

the distance between consecutive waypoints will be longer

(due to the turns in the actual path) and the power demands

will be higher than that required for traveling that same dis-

tance without turning (traveling a given distance with turns

requires more power than traveling that same distance with-

out turns, as specified by Eq. 16). So, instead of constructing

trajectories for vL and vR we perform a change of inputs to

u =
[

v P
]T

, (21)

constructing trajectories for v and P.

So, surrogate variables are needed to describe trajecto-

ries for v and P. Given a waypoint sequence, we consider

two surrogate variables for each consecutive pair of way-

points: the distance bias (defined as the additional distance

beyond the straight-line distance between the two waypoints)

and the constant (average) power. With probability distribu-

tions for these surrogate variables, we can construct future

input trajectories for v and P. At a given prediction time, for

n remaining waypoints, 2n surrogate variables are required

to describe p(UkP
).

We assume our surrogate variables are normally dis-

tributed, defined by a mean and variance. In order to com-

pute the statistics, we construct a large set of random struc-

tured driving scenarios, and simulate the rover for each of

them using the full dynamic model. For each pair of sequen-

tial waypoints, we compute the average power and distance

bias as a function of commanded speed (SL, SM, or SU ). We

then compute the mean and variance of average power and

distance bias. In constructing a realization of the future in-

put trajectory, for a given sequence of waypoints, we com-

pute the straight-line distance between each pair of sequen-

tial waypoints, sample a realization of the distance bias for

the given commanded forward speed for this waypoint pair,

and sample a realization of the average power. Using this,

we can then construct corresponding realizations of v(k) and

P(k) for all k ≥ kP, and thus define a realization of UkP
.

4 Estimation

In order to accurately predict the future behavior of the

system, we must first estimate its state. For this purpose,

we use the unscented Kalman filter (UKF) [33, 34]. Here,

we summarize the UKF and refer the reader to [33, 34] for

mathematical and implementation details, and to [35] for its

application to prognostics.

The UKF approximates a distribution using the un-

scented transform (UT). The UT takes a random variable

x ∈ R
nx , with mean x̄ and covariance Pxx, which is related

to a second random variable y by some nonlinear function

y = g(x), and computes the mean ȳ and covariance Pyy us-

ing a (small) set of deterministically selected weighted sam-

ples, called sigma points [33]. X i denotes the ith sigma point

from x and wi denotes its weight. The sigma points are al-

ways chosen such that the mean and covariance match those

of the original distribution, x̄ and Pxx. Each sigma point

is passed through g to obtain new sigma points Y . There

are several different implementations of the unscented trans-



form with different features; here, we use the symmetric un-

scented transform, in which 2nx+1 sigma points are selected

symmetrically about the mean as described in [34]. It has a

free parameter, κ, used to tune the higher-order moments, for

which we choose the recommended value of 3− nx, which,

in our case, is −5.

In the UKF, first, ns sigma points X̂ k−1|k−1 are derived

from the current mean x̂k−1|k−1 and covariance estimates

Pk−1|k−1 using a sigma point selection algorithm. A one-

step-ahead prediction is made using the system model, which

is then corrected based on the observations.

For the rover, the model described in Section 3.1 is

used. As inputs, the UKF takes u(t) =
[

vL vR

]T
. It pro-

vides a mean and covariance estimate for the states, x =
[

x y θ d td qb qsp qs

]T
.

5 Prediction

In this section, we describe the approach to the predic-

tion problem, which includes prediction of the probability

distributions for kE , ∆kE , zE(kP), and ∆zE(kP). Although

we do not consider uncertainty in the parameters or process

noise in our application, we present the general method that

incorporates these uncertainties.

5.1 Prediction as an Uncertainty Propagation Problem

Section 2 illustrated that kE depends on the initial

state, x(kP); the parameter trajectory up to kE , ΘkP
=

[θ(kP), . . . ,θ(kE)]; the process noise trajectory up to kE ,

VkP
= [v(kP), . . . ,v(kE)]; and the input trajectory up to kE ,

UkP
= [u(kP), . . . ,u(kE)]. Consider one realization of each

of these uncertain quantities at prediction time kP. Then, the

corresponding realization of kE can be computed by simu-

lating the system model until the threshold TE evaluates to

1. The time-index at which this event happens is kE . This

procedure can be graphically represented, as in Fig. 4.

Two functions – R = P(Ξ) and R = Pλ(Ω) – are ex-

plained in Fig. 4. R represents the set of predictions that

is uncertain and r represents a realization of R. The inputs to

the function P consist of the present state (x(kP)), the input

loading trajectory (UkP
), the process noise trajectory (VkP

),

and the model parameter trajectory (ΘkP
). A concatenated

vector of these inputs is represented by Ξ. Since these quan-

tities are uncertain, a realization of Ξ is denoted by ξ. On

the other hand, the inputs to the function Pλ consist of the

present state (x(kP)) and the surrogate variables correspond-

ing to loading (λθ), process noise (λu), and model parameter

(λv) trajectories. A concatenated vector of these quantities

is represented by Ω. Similarly, the quantities in Ω are also

uncertain, and a realization of Ω is represented by ω.

For every trajectory, it is necessary to specify a func-

tion that can generate the entire trajectory as a function of

the surrogate variables. In Fig. 4, there are three trajecto-

ries and constructΘ, constructU, and constructV

serve as those functions to generate model parameter, load-

ing, and process noise trajectories, respectively. Note that, in

the case of the trajectory of the model parameters, the model

Fig. 4. Definition of P

Algorithm 1 r← P(ξ)

1: [x(kP),ΘkP
,UkP

,VkP
]← ξ

2: k← kP

3: x(k)← x(kP)
4: z(kP)← g(x(k),ΘkP

(k),UkP
(k))

5: while TE(x(k),ΘkP
(k),UkP

(k)) = 0 do

6: x(k+1)← f(k,x(k),ΘkP
(k),UkP

(k),VkP
(k))

7: k← k+1

8: x(k)← x(k+1)
9: end while

10: kE ← k

11: ∆kE ← kE −kP

12: zE ← g(x(k),ΘkP
(k),UkP

(k))
13: ∆zE ← zE −z(kP)
14: r← [kE ∆kE zE ∆zE ]

T

Algorithm 2 r← Pλ(ω)

1: [x(kP), θ(kP), λθ, λu, λv]← ω
2: ΘkP

← constructΘ(λθ,θ(kP))
3: UkP

← constructU(λu)
4: VkP

← constructV(λv)
5: r← P([x(kP),ΘkP

,UkP
,VkP

])

parameter values at kP are obtained through the estimator,

and therefore, this estimate is also used along with the model

parameter surrogate variables to generate the trajectory.

The functions P and Pλ are described in terms of the

random variables in Fig. 4. For the purpose of computation,

these two functions can also be described in terms of realiza-

tions of these random variables as r = P(ξ) and r = Pλ(ω),
respectively. These functions are presented as Algorithm 1

and Algorithm 2, respectively.



Algorithm 3 {r(i)}Nsam
i=1 = MC( fΩ(ω),Nsam))

1: for i = 1 to Nsam do

2: ω(i) ∼ fΩ(ω)
3: r(i)← Pλ(ω(i))
4: end for

Since it is easier to define trajectories in terms of sur-

rogate variables, the uncertainty in the surrogate variables is

represented using probability distributions, and the function

Pλ is used for prediction purposes. The goal in prediction is

to compute the probability distribution of R, given the prob-

ability distributions of Ω, which consists of the present state

and the surrogate variables corresponding to input, param-

eter, and process noise trajectories. The computation of the

probability distribution of R is, fundamentally, an uncertainty

propagation problem where it is necessary to propagate the

uncertainty in Ω through this procedure in order to obtain

the distribution for R [24, 27], and thereby estimate the un-

certainty in the predicted quantities.

5.2 Monte Carlo Sampling

Monte Carlo sampling is the most straightforward ap-

proach to compute the uncertainty in the prediction of R.

Several realizations of the state, parameter trajectory, input

trajectory, and process noise trajectory are sampled from

their respective distributions. It is simple to generate multi-

ple realizations of the state variables, but in the case of trajec-

tories, a two-step approach is followed; first, several realiza-

tions of the corresponding surrogate variables are sampled,

and then the corresponding realizations of the trajectories are

generated. For each realization, r is computed. The resulting

set of r values characterizes its distribution; kernel density

estimation can be used to construct the probability density

function of R based on these values of r. Algorithm 3 shows

the Monte Carlo prediction algorithm, where ω represents

the concatenation [x(kP), θ(kP), λθ, λu, λv], and Nsam the

number of Monte Carlo samples.

The computational complexity of Monte Carlo sampling

is driven by Nsam, the number of evaluations of P, which also

determines the accuracy. It can be shown that the covari-

ance estimate (δF ) of the cumulative distribution function

(F) value is related to the number of samples (Nsam) as [36]:

δF =
σF

F
=

√

(1−F)

FNsam

(22)

Ideally, it is desired that δF is small, in order to ensure ac-

curacy. δF approaches zero as Nsam approaches infinity, i.e.,

the accuracy increases with the number of samples.

5.3 Analytical First-Order Reliability Method

While the previous section discussed a sampling-based

approach to predict the uncertainty in R, this section dis-

cusses an analytical, optimization-based method, the inverse

P(ω)− r = 0

MPP

φ1

φ2

β

Standard
Normal
Space Region 1

Region 2

P(ω)< r

P(ω)> r

Linear
Approximation

Fig. 5. Most Probable Point Estimation

first-order reliability method, for this purpose. These meth-

ods focuses on calculating the cumulative distribution of R

while the previously described Monte Carlo approach di-

rectly generates samples from the probability distribution of

R. An important advantage of these methods is that they

provide measures of sensitivity of the output to the differ-

ent sources of uncertainty and hence, preliminary studies can

be helpful to isolate insignificant sources of uncertainty so

that such quantities can be treated deterministically (process

noise and parameter uncertainty, in the case study later pre-

sented in this paper).

The basic concept of the inverse FORM approach is to

linearize the curve represented by the equation rq = Pλ
q (ω)

and transform all the variables in Ω to the uncorrelated stan-

dard normal space (where each variable follows the standard

Gaussian distribution with zero mean and unit variance) us-

ing well-defined, popular transformation functions [36] (de-

noted by TN and the corresponding inverse-transformation

denoted by T−1
N in Algorithm 4). Thus, Rq can be expressed

as a linear sum of Gaussian variables, and therefore the prob-

ability distribution of Rq can be computed easily.

For the purpose of implementation, this method consid-

ers each output quantity (kE , ∆kE , zE , and ∆zE ) separately.

In general, let Nq denote the number of output quantities of

interest, and these outputs are denoted as r = {rq}
Nq

1 . Con-

sider a vector of functions denoted by rq = Pλ
q (ω), for q = 1

to Nq. The goal is calculate the uncertainty in Rq (rq is a real-

ization of Rq) through the cumulative distribution function of

Rq, denoted by FRq(rq) = η. While the FORM approach cal-

culates the value of η corresponding to a given value of rq,

the inverse FORM approach calculates the value of rq cor-

responding to a given value of η. By repeating the FORM

procedure for multiple values of rq, or by repeating the in-

verse FORM procedure for multiple values of η, the entire

CDF FRq(rq) can be calculated. In a practical scenario,it is

easier to select values of η (say, 0.1, 0.2, 0.3 and so on until

0.9) which span the entire probability range and implement

the inverse FORM procedure for each of these η values.

Similar to the Monte Carlo algorithm, the joint probabil-

ity distribution of ω (representing the concatenation [x(kP),
θ(kP), λθ, λu, λv]) is input to the inverse-FORM algorithm

as shown in Algorithm 4. In addition, Nq, the number of η



Algorithm 4 {r(i),η(i)}N
i=1 ←

InverseFORM( fΩ(ω),Nq,Nη,Mω,TN ,T
−1

N )

1: for q = 1 to Nq (For each output quantity of interest) do

2: for i = 1 to Nη (For each η value) do

3: β(i)←−Φ−1(η(i))
4: ω0← Select initial guess for optimization

5: Convergence = 0, j = 0 {Initialize optimization loop}
6: while Convergence← 0 do

7: φ j← TN(ω j) {Transform to Standard Normal Space}
8: φ j← [φ jk;k = 1 to Mω]

9: α j← [α jk;k = 1 to Mω] where α jk =
∂Pλ

q

∂φ jk

10: φ j+1←−
α j

|α j |
×β(i)

11: ω j+1← T−1
N (φ j+1) {Transform to Original Space}

12: if ω j+1 ≈ ω j then

13: Convergence← 1

14: end if

15: j← j+1

16: end while

17: r
(i)
q ← Pλ

q (ω j)
18: end for

19: end for

values (Nη), the number of elements in ω (denoted by Mω)

are also input to the algorithm.

The computational effort (in terms of number of eval-

uations of P) involved in implementing the inverse-FORM

approach for each output quantity (each value of q) can be

approximated to be equal to ”4× (NΩ + 1)× (Nη)”, consid-

ering 4 iterations for optimization convergence, “(NΩ + 1)”

evaluations of P for each iteration, and Nη repetitions of the

inverse-FORM algorithm (one of each η value).

6 Results

In this section, we demonstrate the prognostics frame-

work for prediction of EOD (kE), and RDT/RDD (∆zE ). We

use the relative accuracy (RA) metric as defined in [37] as a

measure of accuracy and relative standard deviation (RSD)

as a measure of spread for the predictions. We present some

scenarios in detail and provide overall performance results

culled from a large, comprehensive set of simulation experi-

ments.

We use the full dynamic model of the rover described

in [28] as a stand-in for the real system. Since the system

model described in Section 3 is an abstraction of this model,

there are some actual parameter uncertainties and process

noise, but these sources of uncertainty are negligible com-

pared to the future input trajectory uncertainty. The insignifi-

cance of these sources of uncertainties were concluded based

on the sensitivities obtained as a result of the inverse-FORM

methodology, during a preliminary, offline study. Thus, as

described in Section 3, we assume that all parameters are

known exactly and no process noise is present. We consider

only initial state uncertainty, related to the state estimate ob-

tained by the UKF, and the future input uncerainty. In each

experiment, predictions are made every 500 s until EOD, and

the accuracy and precision metrics are averaged over all these
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Fig. 6. Example power trajectories for unstructured driving.

predictions. In the following plots, the ∗ superscript indicates

the ground truth values. Results for unstructured driving are

presented in Section 6.1, followed by results for structured

driving in Section 6.2.

6.1 Unstructured Driving

We generate a set of unstructured driving scenarios as

follows. We first select a random maneuver (moving straight,

turning, or stopping) with probabilities p1, p2, and p3 asso-

ciated with each of the above maneuvers (p1 + p2 + p3 = 1).

Second, the duration of the maneuver is sampled from a uni-

form distribution with bounds [50,500] s. If the sampled ma-

neuver is “straight”, then the forward speed value is sampled.

If “turning”, then two speed values (for the left and right-side

wheels) are sampled. If “stopping”, then no speed value is

sampled. Here, we use p1 = 1/2, p2 = 1/3, and p3 = 1/6,

and all speed values are sampled from a uniform distribution

with bounds [0.315,0.630] m/s.

Due to the vast number of possible unstructured driving

trajectories, there is a significant amount of uncertainty in the

wheel speeds, and, correspondingly, the future power usage,

as shown by Fig. 6. Power is maximum when the rover is

turning with a large speed differential between the two sides

of the rover, and minimum when the rover is stopped.

As discussed in Section 3.2.1, the surrogate variables

here are the maneuvers, their durations, and the correspond-

ing wheel speeds. Since we do not know in advance how

many maneuvers will be executed before EOD, it is difficult

to use inverse FORM, and so Monte Carlo sampling is used

here (1000 samples). In this case, we assume the probability

distributions can be accurately determined, and the predic-

tion algorithm uses the same distributions as used to generate

the unstructured driving scenarios.

We first demonstrate the prognosis approach for unstruc-

tured driving using an example. Battery voltage and current

are shown in Figs. 7 and 8. The voltage rises and falls with

decreasing and increasing current, respectively, and drops

precipitously towards 2.5 V as EOD is approached. Predic-

tion results are shown in Figs. 9-11. Due to the significant

uncertainty in the possible future input trajectories, accuracy

and precision are poor, with relative accuracy averaging to

78.87%, with RSD to 13.41%. The prediction algorithm cap-

tures the set of possible trajectories, but the rover only per-

forms one of those trajectories. So, if the actual trajectory is
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Fig. 9. ∆kE prediction results using Monte Carlo.

not close to the most probable trajectory in terms of power

demands, then the predictions will not be very accurate, but

the predicted spread should contain the actual trajectory that

occurred. If the actual power demands are more than than

the most probable, the mean predictions will underestimate

EOD, and if smaller, they will overestimate EOD. In this sce-

nario, initially EOD is overestimated, because future power

demands are higher than on average. As EOD is approached,

accuracy improves since the battery state is being continu-

ously tracked with high accuracy.

We expect the RDT and RDD predictions, besides be-

ing more useful to an operator and automated planners, to

be more accurate and precise, because they are less sensi-

tive to the rover inputs than EOD. For example, if one input
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Fig. 11. RDD prediction results using Monte Carlo.

trajectory at a given speed has twice as many stops as an-

other of the same speed, EOD will be twice as large. On the

other hand, RDT and RDD will remain approximately the

same. RDD is the least sensitive to the future inputs, e.g.,

for a trajectory going twice the speed as another the battery

will discharge in half the time, so driving time will be halved

but driving distance will remain unchanged. Here, for RDT,

RA averages to 91.16% and RSD to 20.77%; for RDD, RA

averages to 94.56% and RSD to 20.25%. Clearly, these pre-

dictions are much more accurate.

We performed over 100 different unstructured driving

scenarios. For ∆kE , RA averages to 86.55% and RSD to

12.71%. For RDT, RA averages to 89.63% and RSD to

18.76%. For RDD, RA averages to 89.26 and RSD to

19.39%. Despite the large amount of uncertainty in the po-

tential trajectories, accurate predictions of RDT and RDD

can be achieved.

6.2 Structured Driving

We generate a set of structured driving scenarios as fol-

lows. First, it is necessary to select a set of waypoints for

navigation on the x-y co-ordinate axes. It is assumed that



Table 3. Input Trajectory Surrogate Variable Statistics

Commanded Speed Variable Mean Variance

0.3150 m/s Average Power (W) 2.93 0.0020

0.3150 m/s Distance Bias (m) 0.79 0.2600

0.4725 m/s Average Power (W) 3.64 0.0023

0.4725 m/s Distance Bias (m) 1.21 0.6900

0.6300 m/s Average Power (W) 4.37 0.0027

0.6300 m/s Distance Bias (m) 1.88 2.2500
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Fig. 12. Sampled power trajectories for structured driving.

the rover starts navigation from an edge of the exploration

region and therefore, the rover keeps moving away from the

origin with respect to one of the axes. Without loss of gen-

erality, this axis is chosen to be the x-axis. The location of

the waypoint is selected by drawing a random ∆x value (uni-

formly from a distribution with bounds [75,125] m) and a

random ∆y value (uniformly from a distribution with bounds

[−50,50] m). If (xP, yP) denotes the location of the current

waypoint, then the location of the next waypoint is given

by (xP +∆x, yP +∆y). Without loss of generality, the start-

ing point is chosen to be the origin. The commanded for-

ward speed between two waypoints is constant and is ran-

domly chosen from a discrete probability distribution for

three different speeds (SL = 0.3150 m/s, SM = 0.4725 m/s,

and SU = 0.6300 m/s), with each speed being equally likely

As discussed in Section 3.2.2, we require 2n surrogate

variables for n remaining waypoints: for each pair of sequen-

tial waypoints, average power and driving distance are ran-

dom. We compute the statistics of the distributions of the sur-

rogate variables, as a function of commanded forward speed,

by analyzing past structured driving scenarios, given in Ta-

ble 3. As speed increases, both the mean and variance of both

power and the distance bias increase. Fig. 12 shows sam-

pled power trajectories for the structured driving case, for a

given set of waypoints, based on these statistics. Because the

variance on the distance bias is relatively small, the sampled

trajectories all arrive at the waypoints at roughly the same

times. The variance on the power usage between two way-

points is relatively larger, and accounts for the differences in

power levels shown in the figure.

We first demonstrate the prognosis approach for struc-

tured driving using an example. Battery voltage and cur-

rent are shown in Figs. 13 and 14, and prediction results in

Figs. 15 and 16. The predictions are very accurate, with an

average RA of 98.64%, and with average RSD of 0.46% for
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Fig. 13. Battery voltage.
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Fig. 15. RDT predictions using inverse FORM.

the RDT predictions (in this case, RDT is equivalent to ∆kE

since the rover does not stop). For the RDD predictions, RA

averages to 98.44 and RSD to 0.66.

We performed 25 total scenarios to confirm that the ap-

proach consistently achieves accurate and precise prediction

results. For RDT, RA averages over all the scenarios to

98.42%, and RSD to 0.55%. For RDD, RA averages to

98.52% and RSD to 0.71%. For comparison, we applied

Monte Carlo sampling (1000 samples) as the prediction al-

gorithm to these scenarios, and similar results are achieved.

For RDT, RA averages to 98.41% and RSD to 0.68%. For

RDD, RA averages to 98.55% and RSD to 0.65%.

These results clearly show the reduction in uncertainty

in the structured driving scenario. Since state estimation er-
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ror is the same for the two driving scenarios, the key differ-

ence is in the future inputs. Since much more information

is known for structured driving, these scenarios are much

more constrained than for unstructured driving, and hence

have less variability and associated uncertainty. This only

enforces the point that all information known about future

input trajectories should be considered in modeling the un-

certainty. The more information, the less uncertainty, and the

more useful the predictions will be.

7 Conclusions

In this paper, we presented a general computational

framework for predicting end-of-discharge, the remaining

driving time, and the remaining driving distance of planetary

rovers, by systematically accounting for the different sources

of uncertainty that affect rover operations. For this purpose,

we developed a prognostics architecture that consists of an

estimation step, using the unscented Kalman filter, and a

prediction step, using Monte Carlo sampling and the inverse

first-order reliability method. Future input trajectories were

characterized using the concept of surrogate variables, sev-

eral simulations were performed to estimate the uncertainty

in such trajectories for two types of driving scenarios (struc-

tured and unstructured). The quality of the prediction was

assessed through comparison against the ground truth and

satisfactory performance was achieved. The results demon-

strate that, besides being more useful predictive quantities,

RDT and RDD predictions are more accurate and precise

than EOD predictions, since they are less sensitive to vari-

ability in the rover inputs.

In future work, we will consider other realistic driving

scenarios for the rover. Further, we will also incorporate

system-level modeling approaches into our framework and

focus on providing useful information for decision-making

activities [38] such as fault mitigation, path planning, mis-

sion routing, etc. For example, while we assumed for struc-

tured driving that the waypoints were given, the method de-

scribed here can be used within a larger decision-making

framework that considers different sets of possible waypoint

plans and selects an optimal path by comparing the RDT and

RDD predictions corresponding to each of the different sets

of waypoint plans.
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