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Abstract— Complex engineering systems require efficient on-
line fault diagnosis methodologies to improve safety and reduce
maintenance costs. In complex systems, faults may occur in
the process itself but also in the sensors monitoring the sys-
tem, which makes the fault diagnosis task difficult, because the
signals from which diagnostic reasoning takes place may be
corrupted by faulty sensors. As such, many diagnosis solutions
focus on either process or sensor faults, but not both. When
considering both types of faults, additional diagnostic informa-
tion is needed because of the additional ambiguity introduced
by potentially faulted sensors. As such, traditional centralized
diagnosis approaches, which already do not scale well, scale even
worse. To address these issues, this paper presents a distributed
diagnosis framework for physical systems applied to diagnosis
of both sensor and process faults. Using a structural model
decomposition method, we develop a distributed diagnoser de-
sign algorithm to build local fault diagnosers. These diagnosers
are constructed based on global diagnosability analysis of the
system, determining the minimal number of residuals required
to have the maximum possible diagnosability in the system.
We evaluate the design approach on a diagnostic benchmark
system that is functionally representative of a spacecraft elec-
trical power distribution system. Results demonstrate that the
proposed distributed approach scales significantly better than a
centralized approach.
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1. INTRODUCTION
Fault diagnosis, an important aspect of systems health man-
agement, is essential for ensuring safe, correct, and efficient
operation of complex engineering systems. Fault diagnosis
involves fault detection (whether system behavior is off-
nominal), fault isolation (what is the root cause of the off-
nominal behavior), and fault identification (what is the fault
magnitude). Fault diagnosis is carried out by using the infor-
mation provided the the system sensors, hence, when sensors
are potentially faulty, the diagnosis process becomes more
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complex. Due to this, many diagnostic approaches do not
consider the diagnosis problem combining both process and
sensor faults. When considering both sets of faults, additional
diagnostic information is required in order to resolve the
ambiguities that arise from diagnostic reasoning over signals
from potentially faulty sensors.

Typically, centralized diagnosis solutions have been proposed
for fault diagnosis, however these solutions have several
inherent shortcomings, the most notable of which is that they
do not scale well as the size of the system grows [1–3]. With
the additional diagnostic information needed to distinguish
among process and sensor faults, they scale even worse. In
addition, if the centralized diagnoser fails, the system will
have to operate without a diagnosis system, and so they
lack robustness. These problems encourage the development
of distributed diagnosis frameworks for complex dynamic
systems.

In previous work [4], we proposed an approach for distributed
diagnosis of process faults based on the analysis of model-
based residuals (a residual being the difference between a
measured sensor output and the predicted value of that sensor
output). Distributed diagnosis was performed by using local
models of the system, which were used to make predictions
of measured outputs. Local models were generated by
decomposing the global model of the system into minimal
submodels using structural model decomposition [5]. In [4],
we only considered process faults, however, since the de-
composition is done by using sensors of the global model
as local inputs for the submodels, the performance of the
fault diagnosis system depends, among other things, on the
sensors from which diagnostic information can be extracted.
Consequently, if a sensor fault occurs, incorrect information
will be sent to the diagnoser, which will generate incorrect
diagnostic conclusions if sensors are not considered to be
potentially faulty. Further, in practice, sensors are usually the
most common components to fail in a system. Therefore, the
approach must be extended to incorporate diagnosis of sensor
faults.

The main idea of diagnosis based on structural model decom-
position is that by using sensor signals as inputs to the local
submodels, faults become decoupled from residuals, thus in-
creasing the diagnosability of the system. Moreover, if some
residuals share common variables, linear combinations of
these residuals can produce new independent residuals. As it
has been demonstrated in the literature (e.g. in [6]), these new
residuals do not provide additional isolation capabilities to
the diagnosis system for process faults, but they can increase
diagnosability for sensor faults. Therefore, the problem of
distributed diagnosis including process and sensor faults is
directly related to one of residual generation and residual
selection to obtain the maximum possible diagnosability in
the system. However, the total number of possible residual
combinations is exceedingly large and most of them provide
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redundant diagnosability information.

In this paper, we formulate a distributed fault diagnoser
design problem for process and sensor faults and establish
its search space. We propose new definitions for global
diagnosability, extended from those presented in [4], which
form the theoretical basis for designing distributed local
diagnosers with guarantees that these local diagnosers can
be run independently, do not need a central coordinator, and
provide the same overall diagnosability as the centralized
diagnoser. We provide a diagnoser design algorithm that
searches in the residual space to find optimal global and local
diagnoser designs. A greedy variant of the algorithm can
find locally optimal solutions with minimal computational
effort. We show that finding a distributed diagnoser design
has significantly better design-time requirements than finding
a centralized diagnoser design. Finally, we demonstrate the
local distributed diagnosers design approach on the Advanced
Diagnostics and Prognostics Testbed (ADAPT) [7], an elec-
trical power system testbed that has served as a benchmark
diagnostic system in the diagnostics community [8, 9].

This paper is organized as follows. Section 2 presents related
work to set the context for our contributions. Section 3
provides background information on our system modeling
and structural model decomposition approaches. Section 4
presents our qualitative fault isolation framework. Section 5
presents the problem formulation. Section 6 describes the
distributed diagnoser design approach, and Section 7 provides
the ADAPT case study and diagnoser design results. Finally,
Section 8 concludes the paper and discusses future work.

2. RELATED WORK
Different approaches for sensor fault diagnosis have been pre-
sented in the scientific literature [10–14]. Typically, in a large
majority of these approaches, residuals are designed such
that they are sensitive to sensor and other component faults.
Then, analysis of these residuals is carried out to solve the
diagnosis problem. The differences between the approaches
mainly include how residuals are constructed from the system
model, and what approach is adopted for the observers that
generate estimates of expected outputs. Some approaches for
pure sensor fault diagnosis include the approach of [10], in
which the authors present a state and noise estimator for de-
scriptor systems that completely decouple both the input and
output disturbances; the approach of [11] that uses a novel
Linear Matrix Inequality (LMI)-based observer design for
Lipschitz nonlinear systems for sensor fault diagnosis; and
the approach of [12], in which a principle component analysis
(PCA) method for detecting and isolating sensor faults in
representative air-handling units is presented. In all of these
approaches, if process faults occur, the sensor fault diagnosis
systems will produce incorrect results. Likewise, approaches
that ignore sensor faults and consider only process faults
produce incorrect diagnoses when sensor faults occur. Some
diagnosis approaches consider both sets of faults, including
the approach of [13], in which optimization techniques are
used for diagnosis of gas turbine engine components and
sensor faults; and the approach of [14], in which a Radial
Basis Function (RBF) neural network is used for sensor and
component fault diagnosis in chemical processes. Similarly,
our approach tackles both sensor and process faults, but,
unlike these approaches, is based on structural analysis of
the system models. Further, our approach is distributed
and addresses many of the drawbacks of typical centralized
diagnosis approaches, such as a single point of failure, high
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Figure 1. Electrical circuit running example.

computational complexity, and poor scalability.

As mentioned in the previous section, the diagnoser design
problem in our approach becomes one of residual selection,
which is related to the problem of sensor placement. Our
work is in contrast to other approaches present in literature
[15–17] in that we look for solutions that obtain maximum di-
agnosability by minimizing the size of the submodels, which
yields smaller-sized diagnosers and allows its implementation
as a distributed approach. For example, in [15], the authors
propose an approach for optimal sensor location to increase
the fault detection performance in dynamic systems using
statistical tests. In [16] the authors assume that the system
is diagnosable given a set of sensors and look for the least
expensive combination of those sensors under which the
system is still diagnosable.

3. SYSTEM MODELING
In this section, we first describe our approach to system mod-
eling. We then describe our structural model decomposition
approach, which, given a global system model, creates local
models of system behavior. We adopt here the structural
model decomposition framework described in [5]. In the
following, we review the main details and refer the interested
reader to [5] for additional explanation.

System Model

We define a model as follows:

Definition 1 (Model) A modelM∗ is a tupleM∗ = (V,C),
where V is a set of variables, and C is a set of constraints
among variables in V . V consists of five disjoint sets, namely,
the set of state variables, X; the set of parameters, Θ; the set
of inputs, U ; the set of outputs, Y ; and the set of auxiliary
variables, A. Each constraint c = (εc, Vc), such that c ∈ C,
consists of an equation εc involving variables Vc ⊆ V .

Input variables, U , are known, and the set of output variables,
Y , correspond to the (measured) sensor signals. Parameters,
Θ, include explicit model parameters that are used in the
model constraints. Auxiliary variables, A, are additional
variables that are algebraically related to the state and param-
eter variables, and are used to simplify the structure of the
equations.

Example 1: Throughout the paper, we will use a simple

2



electrical circuit as a running example, shown in Fig. 1. The
system consists of a voltage source and two resistances, R1
and R2, connected in parallel. Several sensors measure the
current in each branch (i, i1, and i2) and the total voltage (v).
The model M∗ is represented by the variable sets X = ∅,
Θ = {R1, R2, i

b
1, i

b
2, i

b, vb}, U = {Sv}, Y = {i∗1, i∗2,
i∗, v∗}, and A = {i1, i2, i, v}; and the set of constraints
C = {c1, c2, . . . , c8}, where the constraints are given as
follows:

i = i1 + i2, (c1)

i1 =
v

R1
, (c2)

i2 =
v

R2
, (c3)

v = Sv, (c4)

i∗ = i+ ib, (c5)

i∗1 = i1 + ib1, (c6)

i∗2 = i2 + ib2, (c7)
v∗ = v + vb. (c8)

Here, the asterisk superscript is used to denote a measured
value of a physical variable, e.g., i1 is the current and i∗1 is the
measured current. Since i1 is used to compute other variables,
like i, it cannot belong to Y and a separation of the variables
is required. Also, the b superscript is used to indicate a sensor
bias parameter.

The notion of a causal assignment is used to specify the
computational causality for a constraint c, by defining which
v ∈ Vc is the dependent variable in equation εc.

Definition 2 (Causal Assignment) A causal assignment α to
a constraint c = (εc, Vc) is a tuple α = (c, voutc ), where
voutc ∈ Vc is assigned as the dependent variable in εc.

We write a causal assignment of a constraint using its equa-
tion in a causal form, with := to explicitly denote the causal
(i.e., computational) direction.

Definition 3 (Valid Causal Assignments) We say that a set of
causal assignments A, for a model M∗ is valid if (i) for all
v ∈ U ∪ Θ, A does not contain any α such that α = (c, v),
i.e., input or parameter variables cannot be the dependent
variables in the causal assignment); (ii) for all v ∈ Y , A does
not contain any α = (c, voutc ) where v ∈ Vc − {voutc }, i.e., a
measured variable can be used as the dependent variable; and
(iii) for all v ∈ V −U−Θ,A contains exactly one α = (c, v),
i.e., every variable that is not input or parameter is computed
by only one (causal) constraint.

Based on this, a causal model is a model extended with a valid
set of causal assignments.

Definition 4 (Causal Model) Given a modelM∗ = (V,C), a
causal model forM∗ is a tupleM = (V,C,A), where A is
a set of valid causal assignments.

Example 2: The causal model M for the running example
is represented by the same variables and constraints asM∗,
along with the set of causal assignments A = {α1, α2, . . . ,
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Figure 2. Causal graph of the three-tank system.

α8}, as given below:

i := i1 + i2, (α1)

i1 :=
v

R1
, (α2)

i2 :=
v

R2
, (α3)

v := Sv, (α4)
i∗ := i+ ib, (α5)

i∗1 := i1 + ib1, (α6)

i∗2 := i2 + ib2, (α7)
v∗ := v + vb. (α8)

We can visualize a causal model M using a directed graph
G = (N,A), where N is the set of nodes corresponding
directly to the variables V in M, and A is the set of arcs,
where for every (c, voutc ) ∈ A, we include an arc (v′, voutc )
for each v′ ∈ Vc − {voutc }.

Example 3: The causal graph corresponding to the electrical
system running example is given in Fig. 2. In the graph,
we mark inputs with dashed circles and outputs with solid
squares.

Structural Model Decomposition

In our approach, a fault f is modeled as a step change in a
system model parameter value, θ ∈ Θ. Faults cause changes
in observed system behavior from model-predicted behavior.
We can detect such changes by computing residuals, defined
as the difference between the measured and predicted value of
some sensor. Using the causal modelM of a system, we can
predict values of all the sensors in order to compute residuals.
However, in the global model, faults are typically coupled to
all the sensors, i.e., they cause deviations in all the sensors
eventually. Through structural model decomposition, we can
instead define local submodels for the purpose of computing
residuals, in which each residual responds to only a subset of
the faults, increasing diagnosability [18].

Under this approach, given a (global) model, we can create
(local) submodels that use as additional inputs values from
the sensors [5]. Given the set of potential local inputs
(selected from U ∪Y ) and the set of variables to be computed
by the submodel (selected from Y ), we create from a causal
model M a causal submodel MYi , in which Yi ⊆ Y is
computed using Ci ⊆ C. In this way, each submodel
computes its variable values independently from all other
submodels. A causal submodel can be defined as follows.

Definition 5 (Causal Submodel) A causal submodelMYi
of
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a causal model M = (V,C,A) is a tuple MYi
= (Vi, Ci,

Ai), where Vi ⊆ V , Ci ⊆ C, and Ai ∩ A 6= ∅.

When using measurements (from Y ) as local inputs for a
causal submodel, the causality of these constraints must be
reversed, and so, in general, Ai is not a subset of A.

The procedure for generating a submodel from a causal model
is given as Algorithm 1 (GenerateSubmodel) in [5].
Given a causal model M, a set of variables that are consid-
ered as local inputs, U∗, and a set of variables to be computed,
V ∗, the GenerateSubmodel algorithm derives a causal
submodel Mi that computes V ∗ using U∗. The algorithm
works by starting at the variables in V ∗, and propagating
backwards through the causal dependencies. Propagation
along a dependency chain stops once a variable in U∗ is
reached, or once a constraint is reached in which the causality
can be reversed so that a variable in U∗ can become a local
input. We refer the reader to [5] for the algorithm pseudocode
and additional details.

4. RESIDUAL GENERATION AND
QUALITATIVE FAULT ISOLATION

As mentioned in Section 1, the goal of this work is to solve a
distributed diagnosis problem with sensor and process faults
such that the maximum diagnosability is achieved. The
solution of this problem depends on the diagnosis framework
chosen. In this section, we briefly present the fundamentals
of our fault isolation approach. For details, please refer
to [4, 19, 20].

As previously mentioned, in our approach, a fault f is mod-
eled as a step change in a system model parameter value,
θ ∈ Θ. Faults are named by the associated parameter and
the direction of change, i.e., θ+ (resp., θ−) denotes a fault
defined as an abrupt increase (resp., decrease) in the value of
parameter θ. The complete fault set is denoted as F .

Example 4: In the electrical system running example
(Fig. 1), the complete fault set F consists of {R−1 , R

+
1 , R

−
2 ,

R+
2 , i

b−, ib+, ib−1 , ib+1 , ib−2 , ib+2 , vb−, vb+}.

Faults cause transients in the system variables that are ob-
served as deviations of measured values from predicted val-
ues. This is captured through the concept of a residual.

Definition 6 (Residual) A residual, ry , is a time-varying sig-
nal that is computed as the difference between a measure-
ment, y ⊆ Y , and a predicted value of the measurement y,
denoted as ŷ. A set of residuals is denoted as R.

From Section 3, we see that there are several potential sub-
models that can compute ŷ, depending on what local inputs
are available. For a given y, we can find all submodels
computing a version of ŷ (and thus defining a residual)
using the model decomposition algorithm. To compute y
for a given submodel, we can use as local inputs U and
measured sensor signals from Y − {y} to define U∗ for the
GenerateSubmodel algorithm. For a given U∗, only
a subset of U∗ may actually end up as local inputs to the
submodel, so different calls to GenerateSubmodel may
yield the same submodel to compute y. We define the
complete residual set as follows.

Definition 7 (Complete Residual Set) For modelM with in-

puts U and outputs Y , the complete residual set is the set of
all residuals, for each y ∈ Y , from submodelsMi computed
from M using U∗ = U ∪ Y ∗ and V ∗ = {y}, where
Y ∗ ∈ 2Y−{y}.

Informally, the complete residual set contains, for a given
set of sensors, every possible way of computing residuals for
those sensors. It is denoted as RY .

In the nominal situation all residuals are ideally zero, and
when a fault occurs they become nonzero. It is through
analysis of the residual signals that fault isolation is per-
formed. The transients produced in the residuals are captured
as qualitative fault signatures [19].

Definition 8 (Fault Signature) A fault signature for a fault f
and residual r, denoted by σf,r, is pair of symbols s1s2
representing potential qualitative changes in magnitude and
slope of r caused by f at the point of the occurrence of f .
The set of fault signatures for f and r is denoted as Σf,r.

The symbols s1 and s2 are selected from {0,+,-}, denoting
no change, increase, and decrease, respectively.

As additional diagnostic information we use also the temporal
order of residual deviation, captured through the concept of
relative residual orderings [21].

Definition 9 (Relative Residual Ordering) If fault f always
manifests in residual ri before residual rj , then we define
a relative residual ordering between ri and rj for fault f ,
denoted by ri ≺f rj . We denote the set of all residual
orderings for f as Ωf,R.

In order to generate signatures and orderings from a model,
we extend the definition of a model to include qualitative
labels on causal constraints. For each independent variable
involved in a constraint, we associate a qualitative label
indicating the qualitiative direction of influence the inde-
pendent variable has on the dependent variable. A dt label
indicates an integration, a + label indicates that a directly
proportional change, and a - label indicates an inversely
proportional change. From this representation a Temporal
Causal Graph [19] (TCG) is obtained, and the algorithms
described in [22] may be used to automatically derive the
signatures and orderings.2

Example 5: The fault signatures and selected relative resid-
ual orderings on the global residuals for the electrical systems
are shown in Table 1.

Together, fault signatures and relative residual orderings es-
tablish an event-based form of diagnostic information. For
a given fault, the combination of all fault signatures and
residual orderings yields all the possible ways a fault can
manifest in the residuals. Each of these possibilities is a fault
trace.

Definition 10 (Fault Trace) A fault trace for a fault f over
residuals R, denoted by λf,R, is a sequence of fault signa-
tures, of length ≤ |R| that includes, for every r ∈ R that will
deviate due to f , a fault signature σf,r, such that the sequence
of fault signatures satisfies Ωf,R.

2TCGs may also be derived directly from bond graphs [23]. Our modeling
approach is more general in that it is not restricted to the system topologies
imposed by bond graphs.
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Table 1. Fault Signatures and Residual Orderings for the
Electrical Circuit

Fault ri∗ ri∗1 ri∗2 rV ∗ Residual Orderings
R+

1 - - 0 0 ri∗ ≺ ri∗2 , ri∗ ≺ rv∗ , . . .
R−1 + + 0 0 ri∗ ≺ ri∗2 , ri∗ ≺ rv∗ , . . .
R+

2 - 0 - 0 ri∗ ≺ ri∗2 , ri∗ ≺ rv∗ , . . .
R−2 + 0 + 0 ri∗ ≺ ri∗2 , ri∗ ≺ rv∗ , . . .
ib+ + 0 0 0 ri∗ ≺ ri∗2 , ri∗ ≺ rv∗ , . . .
ib− - 0 0 0 ri∗ ≺ ri∗2 , ri∗ ≺ rv∗ , . . .
ib+1 0 + 0 0 ri∗ ≺ ri∗2 , ri∗ ≺ rv∗ , . . .
ib−1 0 - 0 0 ri∗ ≺ ri∗2 , ri∗ ≺ rv∗ , . . .
ib+2 0 0 + 0 ri∗ ≺ ri∗2 , ri∗ ≺ rv∗ , . . .
ib−2 0 0 - 0 ri∗ ≺ ri∗2 , ri∗ ≺ rv∗ , . . .
vb+ 0 0 0 + ri∗ ≺ ri∗2 , ri∗ ≺ rv∗ , . . .
vb− 0 0 0 - ri∗ ≺ ri∗2 , ri∗ ≺ rv∗ , . . .

The set of all fault traces for a fault constitutes its fault
language.

Definition 11 (Fault Language) The fault language of a fault
f ∈ F with residual set R, denoted by Lf,R, is the set of all
fault traces for f over the residuals in R.

In general, two faults are distinguishable if they always, in
finite time, produce different observations. In our diagnosis
framework, distinguishability between faults is characterized
using fault traces and languages.

Definition 12 (Distinguishability) Given a residual set, R, a
fault fi is distinguishable from a fault fj , denoted by fi �R
fj , if there does not exist a pair of fault traces λfi,R ∈ Lfi,R
and λfj ,R ∈ Lfj ,R, such that λfi v λfj .

One fault will be distinguishable from another fault if it
cannot produce a fault trace that is a prefix3 (denoted by v)
of a trace that can be produced by the other fault. If this is not
the case, then when that trace manifests, the first fault cannot
be distinguished from the second.

Distinguishability is used to define the diagnosability of a
diagnosis model under a given fault isolation framework. A
diagnosis model is an abstraction of a system model with only
diagnosis-relevant information, and it is defined as follows.

Definition 13 (Diagnosis Model) A diagnosis model S is a
tuple (F, Y,R, LF,R), where F = {f1, f2, . . . , fn} is a set
of faults, Y is a set of measurements, R is a set of residuals,
and LF,R = {Lf1,R, Lf2,R, . . . , Lfn,R} is the set of fault
languages.

The diagnosability for a diagnosis model is then defined
based on the distinguishability of faults.4

Definition 14 (Diagnosability) The diagnosability of a diag-
nosis model S = (F, Y, R, LF,R), DF,R, is the number of
fault pairs (fi, fj ∈ F ) fi 6= fj where fi �R fj .

It is important to consider here that distinguishability is not

3A fault trace λi is a prefix of fault trace λj if there is some (possibly empty)
sequence of events λk that can extend λi such that λiλk = λj .
4The diagnosability definitions presented here are different from our earlier
work, in [4], in that they convey the amount of diagnosability of a system, i.e.,
diagnosability is a number. In previous work, diagnosability was a Boolean
indicating whether a diagnosis model was completely diagnosable or not.

a symmetric property, hence we can have situations where
fi �R fj but fj ∼R fi. In this case, the diagnosability
definition will count the pair (fi, fj) but not the pair (fj , fi).
In the best of the cases, diagnosability of a diagnosis model
will be equal to |F | ∗ (|F | − 1), and we say that the system
has complete diagnosability. On the other hand, the worst
possible diagnosability is 0.

In order to perform distributed fault diagnosis, the diagnosis
model S is split into n diagnosis submodels S1, S2, . . ., Sn,
where each diagnosis submodel gets a subset of the global
fault set, F . Specifically, the fault set F is partitioned (either
manually or by an automatic method) into local fault sets,
such that every fault in F is included in exactly one local
fault set, i.e., each local diagnoser is responsible for correctly
isolating the faults in its local fault set.

Definition 15 (Diagnosis Submodel) A diagnosis submodel
Si of a diagnosis model S = (F, Y,R, LF,R) is a tuple
(Fi, Yi, Ri, LFi,Ri), where Fi ⊆ F , Yi ⊆ Y , and Ri ⊆ R.

The global correctness condition [4] is that if a fault occurs
the diagnoser responsible for it should identify it, and all
other diagnosers should not identify any of their local faults
as having occurred. However, for two different diagnosis
submodels, Si and Sj , there may be some faults fi ∈ Fi and
fj ∈ Fj , such that both fi and fj (which are distinguishable
for S) produce the same effects on Ri. Hence, if fault fj
occurs in the system, the local diagnoser for Si will think that
fault fi has occurred, which is not correct in a global context.
Therefore, we require an extended notion of diagnosability,
called global diagnosability, that takes into account these
concepts.

Definition 16 (Global Diagnosability) The global diagnos-
ability of a diagnosis submodel Si = (Fi, Yi, Ri, LFi,Ri

)
from diagnosis model S = (F, Y,R, LF,R), DF

Fi,Ri
, is the

number of fault pairs (fi ∈ Fi, fj ∈ F ) fi 6= fj where
fi �Ri

fj .

The best possible global diagnosability is then |Fi|(|F | − 1),
and the worst is 0.5

For distributed diagnosis, the design problem will be one of
residual assignment to diagnosis submodels.6 As we will
describe in the following section, solutions to this problem
are only ones in which we obtain the best possible global
diagnosability. If we partition the global fault set F into the
local fault sets for the diagnosis submodels, then all faults will
be covered. If we then design (i.e., assign residuals to) each
diagnosis submodel such that they all have the best possible
global diagnosability, then the local diagnosers will generate
results that are globally correct, i.e., the result will be the
same as that produced by a centralized diagnoser with the
best possible diagnosability.

5. PROBLEM FORMULATION
The problem we are trying to solve is to design distributed
diagnosers for a given system. The design problem is to select
an optimal set of residuals for each local diagnoser in order to

5Diagnosability is a special case of global diagnosability in which there is
only one diagnosis submodel equal to S.
6For centralized diagnosis, the design problem is one of residual assignment
to a diagnosis model. This problem is a special case of the distributed
diagnoser design problem where there is only one diagnosis model.
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achieve the maximum possible diagnosability covering both
process and sensor faults. We define the maximum diagnos-
ability as the highest possible value of diagnosability for a
given system with modelM. This maximum diagnosability
is always obtained when the complete residual set, RY , is
used. However, the maximum diagnosability can often be
achieved with only a subset of RY , since many residuals
provide redundant information given other residuals, and thus
do not improve diagnosability.

For a given y, there are a total of 2|Y |−1 possible subsets
of Y − {y} from which to define U∗, and so there are at
most that many unique ways to compute a residual for y.
For |Y | sensors then, there are a total of |Y |2|Y |−1 potential
residuals to choose from for each local diagnoser, i.e., RY
is at most that large. For a given local diagnoser, a candidate
solution is then a set of residualsRi ⊆ RY . There are at most
2|Y |2

|Y |−1 − 1 candidate solutions. A candidate solution is a
solution if it achieves the maximum diagnosability, i.e., the
same diagnosability as with RY .

An optimal solution is one that satisfies some given criteria
the best, such as using the minimum number of residuals. We
define a relational operator ≺ for solutions, describing which
solutions are preferred over others and thus obtaining a notion
of optimality for solutions. The ≺ operator depends on the
particular application, and we will describe an implementa-
tion of it in the following section.

The problem can then be formally defined as follows.

Problem 1: For a model M and local fault sets Fi, the
problem is to find, for each Fi, a set of residuals Ri such
that there is no Rj 6= Ri where Rj ≺ Ri.

6. APPROACH
As discussed in Section 3, for a given system we define a
modelM and a set of faults F . From this, we can generate
the complete residual set RY and the set of fault languages
LF,RY

from which we can define its diagnosability. As
discussed in Section 5, a solution to the residual selection
problem for a local fault set Fi is a set of residuals Ri ⊆
RY that has the maximum attainable diagnosability. The
way in which we should most efficiently search the solution
space to find the optimal set of solutions depends on the
particular implementation of the ≺ operator for candidate
solutions [24].

What makes one solution better than another can be defined
using several metrics. First and foremost, one solution is bet-
ter than another if it has better diagnosability, i.e., it has fewer
pairs of indistinguishable faults for the diagnostic information
available from its residuals. We also prefer solutions with a
smaller number of residuals, as these solutions will be simpler
to implement and more efficient. Further, we prefer solutions
with more analytical redundancy, which can be measured as
the ratio of the number of residuals to the number of input
sets that compute them. The more diversity in the residual
inputs, the more robust the solution will be.

So, as an implementation of ≺, we adopt the following for
local fault set Fi: (i) Ri ≺ Rj if DFi,Ri

> DFi,Rj
;

(ii) if DFi,Ri
= DFi,Rj

, Ri ≺ Rj if |Ri| < |Rj |;
(iii) if DFi,Ri = DFi,Rj and |Ri| = |Rj |, Ri ≺ Rj if
|Ri|/|U(Ri)| < |Rj |/|U(Rj)|, where, for a given R, U(R) is

Figure 3. Solution lattice.

defined as the set of input sets used to compute the residuals,
i.e., U(R) = {Ui : ∀ri ∈ R,Ui ∈ Mri} andMri refers to
the submodel computing ri.

There are many ways to search the candidate solution space
to find the set of optimal solutions. One may picture the
search space as a lattice, as shown in Fig. 3 for a search space
of 4 residuals, where a 1 represents inclusion of a residual
ri ∈ RY and a 0 indicates exclusion of a residual. Moving
from one solution to another along an illustrated line indicates
adding a residual (moving up in the lattice) or removing a
residual (moving down in the lattice). Within the candidate
solution space, a subset of the candidates are solutions, and
a subset of these are optimal. In Fig. 3, candidate solutions
are denoted in boldface type. Note that if one residual set R
is a solution, then any residual set R′ ⊇ R is also a solution
(i.e., adding residuals cannot decrease diagnosability). We
prefer solutions that have the minimum number of residuals,
so assuming all else is equal, the solutions that are below
the dashed line in Fig. 3 would constitute the set of optimal
solutions.

We need to search this space in the most efficient way.
A typical search strategy would be to start at some initial
solution, and try to improve it by moving in the lattice. For
a bottom-up search, we start at the bottom of the lattice,
i.e., the solution without any residuals, and move up in the
lattice, adding residuals, until we obtain solutions with the
maximum diagnosability. For a top-down search, we start at
the top of the lattice, i.e., the solution with all residuals, and
move down in the lattice, removing residuals, until we begin
to lose diagnosability. Either approach is valid, however, a
bottom-up search is likely to be more efficient, because it is
much more likely, from our experience, that optimal solutions
lie in the bottom half of the lattice, i.e., less than half the
residuals in RY are required. Since we prefer solutions with
fewer residuals, it makes additional sense to use a bottom-up
search strategy in a breadth-first manner, where we move up
layer-by-layer in the lattice to find a set of minimum-residual
solutions. We can then reduce this set to the set of optimal
solutions.

The bottom-up search algorithm is given as Algorithm 1. The
algorithm maintains a solution setR∗, a queue of solutions to
search next, R, and a set of solutions that have been tried,
Rtried. The search starts at the solution with no residuals,
∅. It goes through the solution queue, popping the next off
the queue, then examining all child solutions containing one
more residual that have not been examined yet. If the new
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Algorithm 1R∗ = BottomUpSearch(Fi, R)

1: R∗ ← ∅
2: R ← ∅
3: Rtried ← ∅
4: nR ←∞
5: whileR 6= ∅ do
6: R′ ← pop(R)
7: if |R′| < nR then
8: for all r ∈ RY −R do
9: R′′ ← R ∪ {r}
10: if R′′ /∈ Rtried then
11: Rtried ←Rtried ∪R′′

12: if R′′ ≺ R′ then
13: R∗ ←R∗ ∪ {R′′}
14: if DF

Fi,R′′
< DF

Fi,R
then

15: R ← push(R, {R′′})
16: else
17: nR ← min(nR, |R′′|)
18: end if
19: end if
20: end if
21: end for
22: end if
23: end while
24: R ← R∗
25: R∗ ← {R(1)}
26: for all R ∈ R do
27: if R ≺ R∗(1) then
28: R∗ ← {R}
29: else ifR∗(1) ⊀ R then
30: R∗ ←R∗ ∪ {R}
31: end if
32: end for

solution is better, it is added to the solution set, and to the
queue. Otherwise, the search along this path will terminate,
because it is not possible to improve the solution further.
Once we find a solution with the maximum diagnosability at
the current breadth, stored in nR, we can stop the search once
we finish examining all solutions in the queue at that breadth,
because at that point adding a residual will always result in
a less preferable solution. Because the same solution can
be reached by multiple paths, the algorithm does not explore
solutions that have already been added to R. After the while
loop, we prune the solution set to optimal solution set (lines
25-32).

The bottom-up search is optimal, because it searches all
solutions at a given breadth, except for those that did not
improve its parent solution (if residuals from that solution
are part of an optimal solution, they will be covered by other
search paths). A greedy version of the algorithms can also be
specified, where at each breadth, we branch from only the n
best solutions. By reducing the branching factor efficiency is
increased substantially, but at the cost of potentially missing
optimal solutions. However, we are still guaranteed that the
solutions have the best attainable diagnosability, since, in the
worst case, it reaches the top of the lattice, i.e., the solution
with all residuals.

For a centralized diagnoser, we call BottomUpSearch(F ,
RY ). Since the candidate solution space is exponential in the
number of residuals, even the bottom-up breadth-first search
can quickly become expensive, thus motivating the use of
greedy algorithms. The number of candidates to search at
a given breadth b is at most

(|RY |
b

)
. So, the fewer residuals

that are needed for an optimal solution, the more efficient the
search will be. By obtaining a distributed diagnoser design,

in which each diagnoser is assigned a local fault set Fi ⊆ F ,
we can improve design-time efficiency in two different ways.
First, the candidate solution space can be smaller, because
typically only a subset of RY , RFi responds to the faults in
Fi. So we need only search over combinations of residuals
in this subset, because residuals that do not respond to any
faults in Fi cannot improve diagnosability so need not be
considered. Specifically, 2|RFi

| << 2|RY |. Second, the
smaller Fi, the smaller the number of residuals needed in a
solution, so the needed breadth in the search space is smaller,
also reducing computation. For a distributed diagnoser then,
we call BottomUpSearch(Fi, RFi

).

To take maximum advantage of these properties, we can
define Fi in a systematic way, where for each fault pa-
rameter θ, we have a local diagnoser and local fault
set consisting of {θ+, θ−}. For each Fi, we then run
BottomUpSearch(Fi, RFi) (or its greedy variant) to ob-
tain solutions.

Example 6: Consider the circuit example. In this case, there
are 16 residuals forming RY . Thus, there are 216 = 65536
candidate solutions. For a centralized diagnoser, the bottom
up algorithm searches 2514 candidates, and finds 5 optimal
solutions, each with perfect diagnosability, 4 residuals, and
1 residual per input set (i.e., the residuals are computed with
completely different sets of inputs). In one solution, we have
two different residuals for i∗, one for i∗1, and one for v∗.
Other solutions have residuals for different sensors. Using
the greedy algorithm, one solution is found that happens to be
included in the optimal set of solutions found by the bottom
up algorithm, yet it searches only 59 candidates.

Example 7: Consider again the circuit example, but for dis-
tributed diagnoser design. Here, we have 6 local fault sets
defined covering the 12 faults. The bottom up algorithm ends
up searching 224 candidates total over all local fault sets,
which is an order of magnitude fewer than in the centralized
case. For a given local fault set at most 10 residuals have
to be searched, so a maximum of 1024 candidates. At most
59 candidates are searched for each local fault set, and as
few as 9. For example, for the local fault set including
the R1 faults, only two residuals are needed with only 1
residual per input set. Other fault sets require only 1 or 2
residuals, significantly reducing the search space compared to
the centralized case. The greedy algorithm also finds a subset
of the optimal solutions, while searching over 95 candidates
total.

7. RESULTS
In this paper, we apply our new methodology to the Advanced
Diagnostics and Prognostics Testbed (ADAPT), an electrical
power distribution system that is representative of those on
spacecrafts. ADAPT serves as a testbed through which
faults can be injected to evaluate diagnostic algorithms [7].
ADAPT has been established as a diagnostic benchmark
system through the industrial track of the International Diag-
nostic Competition (DXC) [8, 9, 25]. In particular, this paper
is focused on diagnosing faults on a subset of ADAPT, called
ADAPT-Lite.

A system schematic for ADAPT-Lite is given in Fig. 4. A
battery (BAT2) supplies electrical power to several loads,
transmitted through several circuit breakers (CB236, CB262,
CB266, and CB280) and relays (EY244, EY260, EY281,
EY272, and EY275), and an inverter (INV2) that converts
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Figure 4. ADAPT-Lite schematic.

dc to ac power. ADAPT-Lite has one dc load (DC485)
and two ac loads (AC483 and FAN416). There are sensors
throughout the system to report electrical voltage (names
beginning with “E”), electrical current (“IT”), one sensor to
report the operating state of a load (fan speed, “ST”), and
another to report the battery temperature (“TE”). Models and
additional details for ADAPT-Lite can be found in [26, 27].

The list of potential faults includes failures in the inverter
(INV2), fan (FAN416), DC load (DC485), and AC load
(AC483), and faults in different current sensors (IT240,
IT267, IT281), voltage sensors (E240, E265), fan speed
sensor (ST516), and battery temperature (TE228). For each
faulty component, there are two fault modes, one in which
there is an increase in the fault parameter and one in which
there is a decrease, resulting in a total of 22 faults.

With the available 7 sensors, there are 34 residuals that
can be generated to form RY . The fault signatures for the
residuals computed from the global model inputs are shown
in Table 2. For brevity, residual orderings are omitted. Note
that with the shown set of residuals, most sensor faults are not
distinguishable. For example, if IT267+ occurs, we have to
wait infinitely long for other residuals to deviate in order to
eliminate INV2+ from consideration. This highlights again
that, when also considering sensor faults, we typically require
more than one residual per sensor in order to achieve the
best diagnosability. With the complete residual set, RY ,
sensor faults become distinguishable, however the system is
not completely diagnosable, as the AC load faults are not
distinguishable from the fan faults. If an AC load fault occurs,
we have to wait, in theory, infinitely long to verify that the fan
speed does not deviate. So, an optimal solution will still leave
those faults indistinguishable.

First, let us consider the centralized diagnoser case. Having
34 residuals results in a search space of 234, or about 17
billion. Obviously, an exhaustive search is not an option.
From a greedy search, which covers 218 candidates, we
find that at least 7 residuals are needed to obtain maximum
diagnosability, so around 7 million candidates would need to
be searched by the bottom-up search algorithm. The solution
found by the greedy algorithm ends up with one residual for
E240, four different residuals for IT240 (i.e., computed with
four different input sets), one for ST516, and one for TE228.
Over the inputs and outputs, it uses all 7 sensors and has six
unique input sets, resulting in an average of 1.17 residuals per
input set.

Instead, let us consider a distributed diagnoser design. In

order to demonstrate the advantage that our proposed defi-
nition of the local fault sets gives, we start first with user-
defined local fault sets. We define 5 local fault sets with
F1 = {TE228+, TE228−}, F2 = {E240+, E240−, IT240+,
IT240−}, F3 = {DC485+, DC485−, IT281+, IT281−},
F4 = {E265+, E265−, INV2+, INV2−, IT267+, IT267−},
and F5 = {AC483+, AC483−, FAN416+, FAN416−,
ST516+, ST516−}. We find that over all fault sets, the total
number of candidates searched by the greedy algorithm is
308. It is larger than for the centralized case because the
design algorithm is run 5 times. The bottom-up algorithm,
in total, searches 4818 candidates, which is significantly
less than 7 million. The optimal solutions need 1, 1, 1,
3, and 3 residuals, respectively. In comparison, the greedy
approach also finds solutions with the same minimum number
of residuals, and the same number of residuals per input set.
It is likely that the smaller the search space, the more likely
it is for the greedy algorithm to find optimal solutions. So,
the greedy variant may be useful in a distributed design to
quickly find good solutions.

Example 8: As an example, a distributed solution found in
this case is as follows. For F1, a single residual for TE228
is used. For F2, a single residual for E240 is used, which
uses IT240 as a local input. For F3, only a single residual is
needed, and using IT281 with IT267 as a local input works.
For F4, three residuals are used: E240 using IT267 as a
local input, E265 with no sensors as inputs, and IT240 using
E240, E265, IT267, and IT281 as local inputs. For F5, three
residuals are used: E240 with no sensors as local inputs,
IT240 with E240, E265, and IT281 as local inputs, and ST516
with E265 as a local input.

Next, we consider a distributed diagnoser design in which we
define the local fault sets as described in the previous section.
Since the fan and AC load faults are not distinguishable, we
group these into the same local fault set, and so have a total of
10 local fault sets. Here, the greedy algorithm searches a total
of 297 candidates over all local fault sets, and the bottom-up
algorithm searches over 1117 candidates, only a quarter of
the number searched with the other local fault set definition.
Again, the solutions found by the greedy algorithm are just as
good as for the bottom-up algorithm; the only disadvantage
is that some optimal solutions are not found using the greedy
algorithm.

Example 9: As an example, a distributed solution found in
this case is as follows. For the TE228 faults, a single residual
for TE228 is needed. For the E240 faults, a single residual is
needed: E240 with E265 and IT267 as local inputs. For the
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Table 2. Selected Fault Signatures for ADAPT-Lite.

Fault E240 E265 IT240 IT267 IT281 ST516 TE228
FAN416+ 0+ 00 -* -0 0+ 0- 00
AC483+ 0+ 00 -* -0 0+ 00 00
DC485+ 0+ 00 -* 00 -+ 00 00
INV2+ 0- +0 +* +0 0- 0+ 00
E240+ +0 00 00 00 00 00 00
E265+ 00 +0 00 00 00 00 00
IT240+ 00 00 +0 00 00 00 00
IT267+ 00 00 00 +0 00 00 00
IT281+ 00 00 00 00 +0 00 00
ST516+ 00 00 00 00 00 +0 00
TE228+ 00 00 00 00 00 00 +0

IT240 faults, a single residual is needed: IT281 with IT240
as a local input. For the DC485 faults, a single residual is
needed: IT281 with E265 and IT267 as local inputs. For the
IT281 faults, a single residual is needed: IT281 with E265
and IT267 as local inputs. For E265 faults, two residuals
are needed: IT281 with E265 and IT267 as local inputs, and
ST516 with E265 as a local input. For the INV2 faults,
two residuals are needed: IT281 with IT267 as an input,
and ST516 with no local inputs. For the IT267 faults, two
residuals are needed: IT281 with IT267 as a local input, and
IT281 with E265 and IT267 as local inputs. For the AC483
and FAN416 faults, three residuals are needed, IT210 with
E240, E265, and IT281 as local inputs, IT281 with no local
inputs, and ST516 with E265 as a local input. For the ST516
faults, one residual is needed: ST516 with E265 as a local
input.

8. CONCLUSIONS
In this work, we have presented a diagnosability-based dis-
tributed diagnosis solution for sensor and process faults. The
solution proposed in this paper analyzes first the diagnos-
ability of the system to determine the maximum attainable
diagnosability for single faults in the system. Then, using
a structural model decomposition method, we develop a
distributed diagnoser design algorithm to build local fault
diagnosers. These diagnosers are constructed based on global
diagnosability analysis of the system, determining the mini-
mal number of residuals required to have the maximum pos-
sible global diagnosability in the system. Several criteria are
taken into account to select the optimal solutions among the
set of solutions. In particular, we used three different metrics:
the diagnosability of the diagnosis submodel; the number of
residuals; and the amount of analytical redundancy.

Design results on the ADAPT case study demonstrated that
the residual search space is considerably smaller for the pro-
posed distributed approach than for the centralized approach.
Also, we show, with several design examples, the running of
the proposed algorithms and the optimal solutions that they
are capable of obtaining for the local diagnosers.

In future work, we will extend the algorithms to find the
best distributed diagnoser solution among all the individual
local diagnoser solutions, i.e., choose using some local and
global criteria which local diagnoser design should be used;
this is another search problem. Additionally, in this paper we
considered only single faults and a continuous system for the
case study, but, in future work, we will study how to extend
this solution to multiple fault diagnosis and hybrid systems.
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