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Abstract

Complex engineering systems require efficient on-line fault diagnosis methodologies to improve safety and reduce
maintenance costs. Traditionally, diagnosis approaches are centralized, but these solutions do not scale well. Also,
centralized diagnosis solutions are difficult to implement on increasingly prevalent distributed, networked embedded
systems. This paper presents a distributed diagnosis framework for physical systems with continuous behavior. Using
Possible Conflicts, a structural model decomposition method from the Artificial Intelligence model-based diagnosis
(DX) community, we develop a distributed diagnoser design algorithm to build local event-based diagnosers. These
diagnosers are constructed based on global diagnosability analysis of the system, enabling them to generate local
diagnosis results that are globally correct without the use of a centralized coordinator. We also use Possible Conflicts
to design local parameter estimators that are integrated with the local diagnosers to form a comprehensive distributed
diagnosis framework. Hence, this is a fully distributed approach to fault detection, isolation, and identification. We
evaluate the developed scheme on a four-wheeled rover for different design scenarios to show the advantages of using
Possible Conflicts, and generate on-line diagnosis results in simulation to demonstrate the approach.
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1. Introduction

The need for increased performance, safety, and reliability of complex engineering systems motivates the devel-
opment of efficient fault diagnosis methodologies. Fault diagnosis is fundamental to reduce downtime and increase
system availability through the life of the system. The process of fault diagnosis includes timely fault detection, i.e.,
recognizing that a fault has occurred in the system; quick fault isolation, i.e., determining the root causes of the fault;
and accurate fault identification, i.e., estimation of the fault size. Our focus in this work is on model-based approaches
to on-line fault detection, isolation, and identification (FDII) in complex dynamic systems. An advantage of using
model-based techniques against other diagnosis approaches, like expert systems or machine learning, lies in the re-
usability of models and the diagnostic algorithms [1]. In particular, in this work we focus on the consistency approach
to model-based diagnosis (known as consistency-based diagnosis, CBD), which has seen significant research activities
from the Artificial Intelligence diagnosis (DX) [2, 3] community in the last two decades.
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Typically, centralized diagnosis solutions have been proposed for model-based diagnosis, but these solutions have
several inherent shortcomings. First, if the centralized diagnoser fails, the system will have to operate without a
diagnosis system (this is usually known as a single point of failure), and second, centralized solutions do not scale
well as the size of the system increases [4–6]. Further, the increased ubiquity of distributed, networked systems makes
the use of centralized diagnosis solutions unwieldy. These shortcomings encourage the development of distributed
diagnosis frameworks for complex dynamic systems.

Our approach has its roots in a CBD qualitative fault isolation (QFI) framework [7], where fault detection in-
volves statistical testing of discrepancies (known as residuals) between observed and expected system behavior, and
fault isolation is performed by analyzing the qualitative values of these residuals. In previous work, we developed
a distributed diagnosis approach [8], where a set of local distributed diagnosers are designed to provide globally
correct local diagnosis results, without a centralized coordinator, and with minimal communication among the local
diagnosers. Subsequently, this work was integrated into the formal event-based framework developed in [9] which
improved diagnosability and efficiency of the local diagnosers [10]. However, the approach proposed in [10] only
distributes the fault isolation task, but the fault detection and identification tasks are still centralized because they use
a global model of the system.

Model decomposition methods provide a systematic approach to decompose the diagnosis task. Several ap-
proaches have been proposed to decompose the global system model into submodels that contain sufficient analytical
redundancy to perform fault detection [11–13]. In this work, we focus on the Possible Conflicts (PCs) [14] approach.
The PCs approach is a structural model decomposition technique from the DX community. PCs are computed as sub-
sets of equations containing the minimal number of constraints required to estimate a measurement. PCs decompose
the system model into independent submodels by using measured signals of the global model as local inputs for the
submodels. Therefore, PCs provide the subset of constraints from the global system model required to compute resid-
uals, and each PC can operate independently, providing a natural way to distribute the residual generation process.
Moreover, the PCs also provide the mechanisms to decompose the global fault identification task into reduced size
local parameter estimators, that can be distributed [15]. However, PCs still require the use of a centralized coordinator
for fault isolation to compute the set of diagnoses based on the triggered PCs.

In this work, we start from a common framework for diagnosis (CBD with QFI), and introducing structural model
decomposition with PCs, we develop an on-line distributed diagnosis framework to design local diagnosers that fully
distribute the diagnosis process. The primary contributions of this work are as follows:

1. A unified distributed diagnosis framework that covers fault detection, isolation, and identification, and is able
to perform on-line distributed diagnosis of dynamic systems.

2. A design approach to implement fully independent distributed diagnosers that guarantees that no central coordi-
nator or on-line communication between the local diagnosers is necessary to provide correct diagnosis results.

3. A generalization of PCs to multi-output PCs that merges PCs to compute multi-output PCs, which are necessary
to accomplish global diagnosability of the local diagnosers.

4. The development of a distributed fault identification approach, where the PCs are used to compute local param-
eter estimators.

5. The application of our distributed diagnosis approach to a simulation model of a four-wheeled rover testbed
at NASA Ames Research Center [16, 17], to demonstrate the improved design of the proposed distributed so-
lution. Using structural model decomposition, we compute local diagnosers of smaller size compared to the
global system model. This improved design is then used to build local event-based diagnosers to demonstrate
the diagnosis capabilities of this new distributed diagnosis framework. Results generated for different fault
scenarios show that the proposed distributed diagnosis framework generates equivalent fault detection and iso-
lation results to those obtained by the centralized approach. For fault identification, we use the local parameter
estimators, which results in an accuracy improvement with respect to the centralized approach.

The paper is organized as follows. Section 2 describes the background, with the system modeling methodology,
the diagnosis context, and the theoretical concepts of residual generation, qualitative fault isolation, and event-based
diagnosis. Section 3 formulates the distributed diagnosis design problem. Section 4 presents the PCs model decom-
position approach and the proposal to generate multi-output PCs. Section 5 describes the event-based distributed
diagnosis architecture. Section 6 proposes the local diagnoser design approach. Section 7 describes the methodol-
ogy to construct the event-based diagnosers, and Section 8 presents the approach for distributed fault identification.
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Figure 1: Three-tank system schematic.

Section 9 presents the rover system case study, demonstrating the validity of the approach for different diagnoser
designs, and showing results obtained with a number of simulated fault scenarios. Section 10 discusses related work
in distributed diagnosis, discrete-event systems, and model decomposition approaches. Finally, Section 11 concludes
the paper.

2. Background

In this work we propose a new framework for distributed diagnosis of dynamic systems within the Artificial Intelli-
gence approach for model-based diagnosis (MBD) [3]. In MBD, diagnosis is carried out by comparing measurements
in the system against the estimation of the behavior of the system computed by using a model of the system. In this
section, we first present our system modeling approach, then, we introduce the diagnosis context and the assumptions
of this work, and finally we present our qualitative framework for fault isolation.

2.1. System Modeling

In our approach, a model is defined as follows [18]:

Definition 1 (Model). A modelM∗ is a tupleM∗ = (V,C), where V is a set of variables, and C is a set of constraints
among variables in V . V consists of four disjoint sets, namely, the set of state variables, X; the set of parameters, Θ;
the set of inputs, U; and the set of outputs, Y . Each constraint c = (εc,Vc), such that c ∈ C, consists of an equation εc

involving variables Vc ⊆ V .

The set of output variables, Y , correspond to the (measured) sensor signals. Parameters, Θ, include explicit model
parameters that are used in the model constraints. Regarding input variables, we make the following assumption:

Assumption 1. Input or exogenous variables, U, are known.

Throughout this paper, we will use a standard three tank-system (Fig. 1) as a running example to illustrate the
basic concepts, formulate the problem, and explain our primary definitions. The tanks are connected serially, and the
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model of the system is represented by the following set of constraints:3

p1 =
ρ · g
A1

∫ t

t0

(
u1 −

1
Re1

(p1) −
1

Re12
(p1 − p2)

)
· dt (c1)

p2 =
ρ · g
A2

∫ t

t0

(
u2 +

1
Re12

(p1 − p2) −
1

Re2
(p2) −

1
Re23

(p2 − p3)
)
· dt (c2)

p3 =
ρ · g
A3

∫ t

t0

(
u3 +

1
Re23

(p2 − p3) −
1

Re3
(p3)

)
· dt (c3)

h1 =
p1

ρ · g
(c4)

h2 =
p2

ρ · g
(c5)

h3 =
p3

ρ · g
(c6)

where, for tank i, ui denotes the input flow, pi denotes the pressure in the tank, Ai denotes the cross section of the
tank, and Rei denotes the resistance of the connected drain pipe. For tanks i and j, Rei j denotes the connecting pipe
resistance. Three output sensors, h1, h2, and h3, measure the level in the three tanks.

Example 1. For the three-tank system, the model M∗ is represented by the variable sets X = {p1, p2, p3}, Θ =

{A1, A2, A3,Re1,Re2,Re3,Re12,Re23}, U = {u1, u2, u3}, and Y = {h1, h2, h3}; and the set of constraints C = {c1, c2, c3,
c4, c5, c6}.

The notion of a causal assignment is used to specify the computational causality for a constraint c, by defining
which v ∈ Vc is the dependent variable in equation εc.

Definition 2 (Causal Assignment). A causal assignment α to a constraint c = (εc,Vc) is a tuple α = (c, vout
c ), where

vout
c ∈ Vc is assigned as the dependent variable in εc.

We write a causal assignment of a constraint using its equation in a causal form, with := to explicitly denote the
causal (i.e., computational) direction.

Definition 3 (Valid Causal Assignments). We say that a set of causal assignmentsA, for a modelM∗ is valid if

• For all v ∈ U ∪ Θ,A does not contain any α such that α = (c, v).

• For all v ∈ Y ,A does not contain any α = (c, vout
c ) where v ∈ Vc − {vout

c }.

• For all v ∈ V − U − Θ,A contains exactly one α = (c, v).

The definition of valid causal assignments implies that input or parameter variables cannot be the dependent
variables in the causal assignment, a measured variable can be used as the dependent variable, and every variable,
which is not input or parameter, is only computed by one (causal) constraint. Based on this, a causal model is a model
extended with a valid set of causal assignments.

Definition 4 (Causal Model). Given a modelM∗ = (V,C), a causal model forM∗ is a tupleM = (V,C,A), whereA
is a set of valid causal assignments.

Example 2. For the three-tank system model, the causal constraints are as follows.

3Since we are working with dynamic systems, the dynamic behavior can be modeled using either integration or differentiation [11, 12, 14, 19].
In this work, we have used integration to avoid problems of differentiation regarding noisy measurements and others. However, this is just an
implementation decision, and the approach presented in this work is independent of how dynamic behavior is modeled.
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Figure 2: Causal graph for the three-tank system model.

p1 :=
ρ · g
A1

∫ t

t0

(
u1 −

1
Re1

(p1) −
1

Re12
(p1 − p2)

)
· dt (α1)

p2 :=
ρ · g
A2

∫ t

t0

(
u2 +

1
Re12

(p1 − p2) −
1

Re2
(p2) −

1
Re23

(p2 − p3)
)
· dt (α2)

p3 :=
ρ · g
A3

∫ t

t0

(
u3 +

1
Re23

(p2 − p3) −
1

Re3
(p3)

)
· dt (α3)

h1 :=
p1

ρ · g
(α4)

h2 :=
p2

ρ · g
(α5)

h3 :=
p3

ρ · g
(α6)

The causal modelM is represented by the variable sets X = {p1, p2, p3}, Θ = {A1, A2, A3, Re1, Re2, Re3, Re12,
Re23}, U = {u1, u2, u3}, and Y = {h1, h2, h3}; the set of constraints C = {c1, c2, c3, c4, c5, c6}; and the set of causal
assignmentsA = {α1, α2, α3, α4, α5, α6}.

We can visualize a causal modelM using a directed graph G = (N, A), where N is the set of nodes corresponding
directly to the variables V inM, and A is the set of arcs, where for every (c, vout

c ) ∈ A, we include an arc (v′, vout
c ) for

each v′ ∈ Vc − {vout
c }.

Example 3. The causal graph corresponding to the three-tank system model is given in Fig. 2. In the graph, we mark
inputs with dashed circles, state variables with dashed squares, and outputs with solid squares.

2.2. Consistency-based Diagnosis

As we previously mentioned, in this work we will approach the fault diagnosis problem using model-based di-
agnosis. More precisely, our proposal is based on the consistency-based diagnosis (CBD) approach as proposed by
Reiter in [2]. But, we extend the approach to dynamic and distributed systems using concepts from the Control Engi-
neering approach to MBD, known as the FDI approach, given the ongoing interest in both communities to develop a
common framework for MBD [20–23].

As pointed out in several reviews of the CBD field [5, 21], there is no general theoretical framework for CBD of
dynamic systems [24], but a collection of several works following the same consistency-based principles for diagnosis
using different kind of models and different temporal ontologies exists [5, 7, 25–27]. As a consequence, we will start
from the basic principles stated by de Kleer and Kurien [21] for static systems, and we will state the relevant working
hypotheses [5] in our diagnosis process for dynamic systems:
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• Our system model is equation-based, not component-based. That is, it is made up of a set of equations that
contains variables and/or parameters. Changes in some of these parameters will be responsible for the faulty
behavior of the system. In many engineered systems it is possible to go from a equation-based to a component-
based model, thus providing a higher level of abstraction in the results.

• We assume that the presence of faults will not introduce “genuine” new equations in the system, i.e. will not
change the model structure.4

• The system model describes the behavior of the system, not how to diagnose it (e.g., as it happens in expert
systems).

• A domain-independent reasoning engine performs the diagnosis task using the model.

• We assume that the set of measurements are fixed, and all of the diagnostic reasoning is based on the equation-
based model and the values observed for the measurements. No additional measurements and model information
becomes available once the diagnosis is initiated.5

• Finally, we do not impose that all of the computations required to generate diagnostic candidates is done online.
Information may be pre-computed from the model. But this assumption can be relaxed.6

MBD proceeds in an iterative process of fault detection, fault isolation (or localization), and fault identification.
In our context, a fault is the cause of an unexpected, persistent deviation of the system behavior from the accept-
able nominal behavior. Moreover, since our proposal is equation-based and not component-based, we will link fault
candidates to the set of parameters Θ inM.

In CBD, fault detection is carried out based on conflicts, that are related to a set of correctness assumptions for
the model components that are not consistent with current measured values in the system. In this work, we associate
the correct behavior assumptions to the nominal value of the parameters in Θ [2, 28],7 and conflicts are computed as
subsets of the elements θ ∈ Θ.8

The set of conflicts can be computed on-line using an ATMS-like engine [28, 31], propagating backward in a causal
model [7, 26], or can be precomputed using off-line dependency-recording techniques such as Possible Conflicts [14],
Potential Conflicts [23], or equivalent techniques. It should be noted that the works by Cordier et al. [23] and de Kleer
and Kurien [21] stated the similarities between Reiter’s theory for diagnosis and the FDI approach based on ARRs.
In that work, the support for an ARR was the set of correctness assumption linked to components that were involved
in an ARR, and they were considered as equivalent to the correctness assumptions in a conflict. In an equation-based
approach the parameters play the role of components, with respect to correctness assumptions. In that way we can
redefine a conflict as:

Definition 5 (Conflict). A conflict is the set of correctness assumptions, θ ⊆ Θ, related to the equations required to
estimate a discrepancy.

In our framework, a conflict will arise from the discrepancy between a measurement and an estimation of the
measurement. Fault isolation is straightforward in CBD once we have conflicts. We only need to compute the
minimal hitting sets of the conflicts, thus leading to faulty parameters that are inconsistent with the whole set of
detected discrepancies.

In our approach, we go a step further because our model is able to predict faulty behavior too. Thus we can provide
a more precise set of candidates if we take into account how faults are related to parameters [11, 32]:

4This way we also eliminate the possibility to isolate bridge or structural faults, as referred in early DX literature.
5In most on-line real systems the set of measurements is known and fixed. We are monitoring the system on-line, based on this set of measure-

ments, and it is from this on-line monitoring process where we determine that something is wrong and we perform our diagnosis. If we work on a
post-mortem diagnosis scenario, additional measurement points could be considered. But this is not our case.

6We think that this is not a major difference with the original approach, and we could use a pure on-line model-based diagnoser in the imple-
mentation stage.

7These correctness assumptions are modeled as OK(·) or ¬AB(·) in [2] and [28], respectively.
8Similarly, this is the assumption used in the structural approaches to MBD from the FDI field to compute the structure of Analytical Redun-

dancy Relations, ARRs. These approaches have been demonstrated to be equivalent to conflict calculation for both static [23, 29], and dynamic
systems [30].
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Definition 6 (Fault). A fault is a deviation of exactly one parameter of the system model from its nominal value.

A fault is denoted as f , and it is modeled, in our work, as an unexpected step change in a system model parameter
value, θ ∈ Θ, and F represents the fault set. Faults are named by the associated parameter and the direction of change,
i.e., θ+ (resp., θ−) denotes a fault defined as an abrupt increase (resp., decrease) in the value of parameter θ.

Example 4. In the three-tank system in Fig. 1, the fault set considered is F = {A−1 , A
−
2 , A

−
3 ,Re+

1 ,Re+
2 ,Re+

3 ,Re+
12,Re+

23}.

We make the following assumption regarding faults:

Assumption 2. Only single faults occur in the system.9

Since our main goal is the accurate identification of a single fault, we can define diagnosis in this context as:

Definition 7 (Diagnosis). A diagnosis is a set of single fault hypotheses that are consistent with the observations.

In this work we will not use the classical GDE approach to consistency-based diagnosis extended for dynamic
systems. We will use a structural approach to determine off-line the submodels that can generate a discrepancy, as
will be explained in Section 4. These submodels will contain a set of correctness assumptions that can be identified
as potential conflicts [14, 23]. Once the submodels are computed off-line, we build an executable model that will be
responsible for behavior estimation. Whenever we find a discrepancy between observed and estimated behavior we
consider that the potential or possible conflict is present, and we can obtain the set of fault candidates by computing
the minimal hitting-set for the sets of correctness assumptions.

Since we work with dynamic systems and a given set of measurements, in order to isolate fault diagnosis candi-
dates we can proceed in different ways: waiting for more observations to deviate, using qualitative information about
the system measurements, or using predictive fault models. In our approach, we will use the three options within a
CBD approach with fault models, where we will reject inconsistent fault mode assignments, as we describe next.

2.3. Qualitative Framework for Fault Isolation

In this subsection, we recapitulate the basic theoretical concepts that our diagnosis approach is based on. We first
present the concept of residual, review the theoretical framework for qualitative fault isolation [7], and then review
the framework for event-based fault modeling [9].

Faults in the system manifest as persistent abrupt changes in the value of the system parameters, causing transients
in the system variables that are observed as deviations of measured values from predicted values, triggering residuals.
The evolution of these deviations caused in the residuals are used to isolate the true faults. A residual is an equivalent
concept to discrepancy, used by researchers from both the Artificial Intelligence and the Control Engineering fields,
and it is defined as follows:

Definition 8 (Residual). A residual, ry, is a time-varying signal computed as the difference between a measurement,
y ⊆ Y , and a predicted value of the measurement y, denoted as ŷ.

Concerning fault diagnosis, a residual is a fault indicator, based on an observed deviation between measurements
and model-based estimations. The predicted value of the measurement is computed by using the model of the sys-
tem [7] (this model can be either the global model of the system or a submodel of this global model with enough
redundancy to estimate the measured variable y). Hence, the residual is ideally zero in the nominal situation, and
nonzero when a fault occurs in the system. The residual set is denoted as R.

Example 5. In the three-tank system example, since we measure the level in each one of the tanks, we can compute
three different residuals, rh1 , rh2 , and rh3 , where rh1 (cf., rh2 and rh3 ) is computed as the difference between the
measurement of the level in tank 1 (cf., 2 and 3) and the prediction of the level in tank 1 (cf., 2 and 3).

9This assumption implies that all of the observed deviations in the measurements can be explained by a single deviated parameter value.
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Figure 3: Residual deviations and corresponding fault signatures.

When faults occur, they produce deviations in the residuals from zero, and it is this information that is used to
generate conflicts and isolate faults. Because reasoning over the continuous residual signals is difficult and compu-
tationally demanding, we abstract a residual into a symbolic form. The transient in the residual signal at the time it
is triggered is abstracted using qualitative +, -, and 0 values in the signal magnitude and derivatives, justified by the
Taylor series expansion of the signal [33]. Consequently, the interpretation for these qualitative values is: a “0” means
the observation is within the nominal thresholds, i.e., ŷ−T < y < ŷ+T ; a “+” simply means the observation y is above
the predicted output ŷ plus the threshold T , i.e., y > ŷ + T ; and a “-” means the observation is below the predicted
output minus the threshold, i.e., y < ŷ − T . We retain only the change in magnitude and the first nonzero derivative
change, which, over time, will manifest as a change in slope.

Definition 9 (Fault Signature). A fault signature for a fault f and residual r, denoted by σ f ,r, is pair of symbols s1s2
representing potential qualitative changes in magnitude and slope of r caused by f at the point of the occurrence of f .
The set of fault signatures for f and r is denoted as Σ f ,r.

Note that this definition of a fault signature is independent of the system inputs and fault magnitude. If, for exam-
ple, for f and r, the fault signature set Σ f ,r = {+−}, this means that the fault will always produce an immediate increase
in residual magnitude followed by a decrease in residual slope. Σ f ,r is usually a singleton because signatures are de-
fined with respect to the residual, which is a difference. An observed fault signature on residual ry for measurement y
is written as rs1 s2

y , e.g., r+−
h1

.
The complete set of possible fault signatures for a residual we consider here is {+−,−+, 0+, 0−,+0,−0}. Residual

deviations in the positive direction and their corresponding signatures are shown in Fig. 3.
Fault signatures form the basis for fault isolation. We use both the qualitative values of the fault signature and the

temporal order of the residual deviations as discriminatory information. The temporal order of residual deviations for
a given model, termed relative residual orderings [34], are based on the intuition that fault effects will manifest in
some parts of the system before others. As previously described in this section, for a given model, there is a residual
defined for each measurement in the model. Within this model, the relative ordering of the residual deviations can be
computed based on analysis of the transfer functions from faults to residuals, as proven in [34].

Definition 10 (Relative Residual Ordering). If fault f always manifests in residual ri before residual r j, then we
define a relative residual ordering between ri and r j for fault f , denoted by ri ≺ f r j. We denote the set of all residual
orderings for f as Ω f ,R.

Note that in this definition, we are referring specifically to deviations in the residuals caused by faults. In this
paper, to make the approach as general as possible, we assume that fault signatures and relative residual orderings are
given as inputs. In practice, this information can be generated by manual analysis of the system model, by simulation,
or automatically from certain types of models, e.g., as presented in [35].

Example 6. Table 1 shows the predicted fault signatures and residual orderings for the model of a three-tank system
with F = {A−1 , A−2 , A−3 , Re+

1 , Re+
2 ,Re+

3 , Re+
12, Re+

23}, Y = {h1, h2, h3}, and R = {rh1 , rh2 , rh3 }. For example, consider A−1 .
An abrupt decrease in A−1 would cause an abrupt increase in p1 (see c1), and an abrupt increase in h1 (see c4). The
increase in p1 would cause an increase in the flow to the second tank, which through the integration manifests as a
first-order increase in p2 and h2 (resulting in r0+

h2
). Similarly the increase in p2 causes a second-order increase in p3

8



and h3 (resulting in r0+
h3

). The first-order increase in p2 also causes a second-order decrease in p1 and h1, resulting in
r+−

h1
. Because of the integrations, the abrupt change in rh1 is observed first, followed by the change in rh2 and then rh3 ,

resulting in the residual orderings rh1 ≺ rh2 , rh1 ≺ rh3 , and rh2 ≺ rh3 .

Table 1: Fault signatures and relative residual orderings for the global model,M, of the three-tank system.

Fault rh1 rh2 rh3 Residual Orderings

A−1 +- 0+ 0+ rh1 ≺ rh2 , rh1 ≺ rh3 , rh2 ≺ rh3

Re+
1 0+ 0+ 0+ rh1 ≺ rh2 , rh1 ≺ rh3 , rh2 ≺ rh3

Re+
12 0+ 0- 0- rh2 ≺ rh3

A−2 0+ +- 0+ rh2 ≺ rh1 , rh2 ≺ rh3

Re+
2 0+ 0+ 0+ rh2 ≺ rh1 , rh2 ≺ rh3

Re+
23 0+ 0+ 0- rh2 ≺ rh1

A−3 0+ 0+ +- rh2 ≺ rh1 , rh3 ≺ rh1 , rh3 ≺ rh2

Re+
3 0+ 0+ 0+ rh2 ≺ rh1 , rh3 ≺ rh1 , rh3 ≺ rh2

Together, fault signatures and relative residual orderings establish an event-based form of diagnostic information.
For a given fault, the combination of all fault signatures and residual orderings yields all the possible ways a fault can
manifest in the residuals. We define each of these possibilities as a fault trace.

Definition 11 (Fault Trace). A fault trace for a fault f over residuals R, denoted by λ f ,R, is a sequence of fault
signatures, of length ≤ |R| that includes, for every r ∈ R that will deviate due to f , a fault signature σ f ,r, such that the
sequence of fault signatures satisfies Ω f ,R.

Note that fault traces are required to be maximal in such way that a fault signature is included in the trace for every
residual that will deviate due to the fault.

Example 7. Given R = {rh1 , rh2 , rh3 }, for fault A−2 , from Table 1 we see that the fault effects will appear first on rh2 ,
and then it is unknown whether rh1 or rh3 will deviate next. Hence, there are two possible fault traces: r+−

h2
r0+

h1
r0+

h3
and

r+−
h2

r0+
h3

r0+
h1

. On the other hand, for A−3 , there is only one possible fault trace, r+−
h3

r0+
h2

r0+
h1

.

We group the set of all fault traces into a fault language. The fault model, defined by a finite automaton, concisely
represents the fault language of a fault.

Definition 12 (Fault Language). The fault language of a fault f ∈ F with residual set R, denoted by L f ,R, is the set of
all fault traces for f over the residuals in R.

Definition 13 (Fault Model). The fault model for a fault f ∈ F with residual set R, is the finite automaton that accepts
exactly the language L f ,R, and is given by L f ,R = (S , s0,Σ, δ, A) where S is a set of states, s0 ∈ S is an initial state, Σ

is a set of events, δ : S × Σ→ S is a transition function, and A ⊆ S is a set of accepting states.

Example 8. Selected fault models for the three-tank system are shown in Fig. 4. For example, as seen in LA−2 ,R,
the fault A−2 may manifest as the fault traces r+−

h2
r0+

h1
r0+

h3
or r+−

h2
r0+

h3
r0+

h1
, as implied by the fault signatures and residual

orderings.

From the fault models, it is clear that each fault may manifest in the residuals in several ways. This ambiguity
arises from two sources. First, there may be more than one fault signature for a given fault and residual. Second, the
residual orderings, in general, define only a partial ordering of the residual deviations. As a result, there are several
potential fault traces associated with each fault.

In this framework, our set of correctness assumptions state that each potential faulty parameter in the model is
initially at a nominal value. In on-line diagnosis, until a residual is observed to deviate, the minimal diagnosis is the
empty diagnosis,∅, since each (observable) fault is predicted to generate at least one residual deviation. When the first
residual is observed to deviate, we observe the fault signature through signal processing methods (as it is explained

9



r0+
h3

r+−
h2

r0+
h1

r0+
h3

r0+
h1

(a) LA−2 ,R

r0+
h3

r0+
h2

r0+
h1

r0+
h3

r0+
h1

(b) LRe+
2 ,R

r0+
h2

r0−
h3

r0+
h1

r0−
h3

r0+
h1

r0−
h3

r0+
h2

(c) LRe+
23 ,R

r0+
h1

r0+
h2

r+−
h3

(d) LA−3 ,R

r0+
h1

r0+
h2

r0+
h3

(e) LRe+
3 ,R

Figure 4: Fault models for some faults of the three-tank system, where R = {rh1 , rh2 , rh3 }.

in Section 5. We then generate a conflict and we perform fault isolation through the sets of faults whose signatures
are consistent with observed residual deviations. In CBD, the first diagnosis set is derived as the minimal hitting set
of the current diagnosis set, ∅, with the conflict, so the new diagnosis set is the conflict. From this point on, since
we make the single fault assumption (Assumption 2), the new diagnosis set is computed simply as the intersection of
the current diagnosis set and the new conflict. When the next residual is observed to deviate, we generate the next
conflict following the same procedure. Formally, for an observed fault signature σi on residual r, with λi−1σi being
the observed fault trace up to this point, the fault candidates are generated as the set of faults where for f , there exists
a trace λ f ,R ∈ L f ,R such that λi−1σi v λ f ,R. The new diagnosis set is computed as the minimal hitting set of the conflict
and the previous diagnosis. As new fault signatures are observed, the process continues.

Example 9. Consider the set of faults {A−2 ,Re+
2 ,Re+

23, A
−
3 ,Re+

3 }, and the set of residuals {rh1 , rh2 , rh3 } (see Fig. 4). Say
that the first observed fault signature is r0+

h2
. Then the conflict is {Re+

2 ,Re+
23}, and the new diagnosis set is {Re+

2 ,Re+
23}.

Say the next signature is r0+
h3

. The conflict is {Re+
2 }, as only that fault can produce that r0+

h2
r0+

h3
as the beginning of a

fault trace. The new diagnosis set is then {Re+
2 }, and a unique diagnosis is achieved.

Although our diagnosis framework will make an extensive use of qualitative information about residuals, it should
be pointed out that we need to use quantitative models for behavior estimation, because a precise estimation will allow
our diagnoser to perform quick fault detection, and will be the input for quantitative fault identification later. This
issue will be further discussed in Section 5.

3. Problem Formulation

As mentioned in Section 1, consistency-based diagnosis frameworks for continuous systems are typically imple-
mented using a centralized approach. This centralized approach is based on the global model of the system. However,
centralized approaches face several drawbacks: they are expensive in memory and computation, do not scale well as
the size of the system grows [4–6], and also introduce a single point of failure.

Distributed diagnosis approaches break down the diagnosis problem into different subtasks that may be executed
on separate processors, however a central coordinator is typically needed in distributed solutions to form a consistent
global diagnosis from the local diagnoses [36, 37]. To overcome such a drawback, we propose a distributed diagnosis
approach capable of designing local diagnosers that generate globally correct local diagnosis results, with no central
coordinator.

Diagnoser design uses the notion of global diagnosability, i.e., every local diagnoser must produce globally correct
results [8, 10]. Given a model of a system, and the set of faults (F) and residuals (R), we may establish the notions
of distinguishability and diagnosability. Using these definitions, we can formally define the globally diagnosable
diagnosis submodel design problem.
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In general, two faults are distinguishable if they always, in finite time, produce different residuals. In our diagnosis
framework, distinguishability between faults is characterized using fault traces and languages.

Definition 14 (Distinguishability). Given a residual set, R, a fault fi is distinguishable from a fault f j, denoted by
fi �R f j, if there does not exist a pair of fault traces λ fi,R ∈ L fi,R and λ f j,R ∈ L f j,R, such that λ fi v λ f j .

One fault will be distinguishable from another fault if it cannot produce a fault trace that is a prefix10 (denoted
by v) of a trace that can be produced by the other fault. If this is not the case, then when that trace manifests, the
first fault cannot be distinguished from the second. This implementation of distinguishability should be clear from
the description of how conflicts are generated and diagnoses are computed in Section 2.3. Consider the following
example.

Example 10. Consider the the faults Re+
2 and Re+

23, and the set of residuals {rh1 , rh2 , rh3 } (see Table 1 and Fig. 4). Re+
2

is distinguishable from Re+
3 because if Re+

3 occurs, it will produce either r0+
h2

r0+
h3

r0+
h1

or r0+
h2

r0+
h1

r0+
h3

, neither of which Re+
23

can produce. Consider now the same faults but residuals {rh1 , rh2 }. Re+
2 will produce only r0+

h2
r0+

h1
, which can also be

produced by Re+
23, therefore, with this set of residuals Re+

2 is not distinguishable from Re+
23. Similarly, Re+

23 is not
distinguishable from Re+

2 because it can produce r0+
h2

r0+
h1

, which Re+
2 can also produce.

Distinguishability requires that in all circumstances two faults cannot produce the same observable behavior. For
example, if a fault f1 can produce a trace that another fault f2 cannot, but can also produce a trace that f2 can, we still
say they are not distinguishable. In practice, if the second trace is the one that manifests, we will distinguish them,
however, since we are tackling a design problem in which we want to guarantee distinguishability, we must take into
account that either trace can be produced, so we cannot claim that the faults will always be distinguished.

Distinguishability is used to define the diagnosability of a diagnosis model under a given fault isolation framework.
A diagnosis model is an abstraction of a system model with only diagnosis relevant information, and it is defined as
follows.

Definition 15 (Diagnosis Model). A diagnosis model S is a tuple (F,Y,R, LF,R), where F = { f1, f2, . . . , fn} is a set of
faults, Y is a set of measurements, R is a set of residuals, and LF,R = {L f1,R, L f2,R, . . . , L fn,R} is the set of fault languages.

Example 11. A diagnosis model S for the three-tank system is represented by the variable sets F = {A−1 , A−2 , A−3 , Re+
1 ,

Re+
2 , Re+

3 , Re+
12, Re+

23}, Y = {h1, h2, h3}, R = {rh1 , rh2 , rh3 }, and the set of fault languages LF,R = {LA−1 ,R, LA−2 ,R, LA−3 ,R,
LRe+

1 ,R, LRe+
2 ,R, LRe+

3 ,R, LRe+
12,R, LRe+

23,R}

If a diagnosis model is diagnosable, then we can guarantee about the unique isolation of every fault in the diagnosis
model.

Definition 16 (Diagnosability). A diagnosis model S = (F,Y,R, LF,R) is diagnosable if and only if (∀ fi, f j ∈ F) fi ,
f j =⇒ fi �R f j.

If S is diagnosable, then every pair of faults is distinguishable using the residual set R. Hence, we can uniquely
isolate all faults of interest. If S is not diagnosable, then ambiguities will remain after fault isolation, i.e., after all
possible fault effects on the residuals have been observed.

Example 12. Consider theM-based residual set given in Table 1. A diagnosis model defined with these residuals is
diagnosable when both fault signatures and residual orderings are used (without orderings, faults Re+

1 , Re+
2 , and Re+

3
have all the same signatures and cannot be distinguished from one another).

Our objective is to decompose the overall diagnosis task into smaller subtasks performed by local diagnosers with
the following properties: (i) all single faults of interest in the diagnosis model can be diagnosed, and (ii) the local
diagnosis results are globally correct. These two properties eliminate the need for a centralized coordinator. In order
to decompose the diagnosis task based on diagnosability, the diagnosis model must be diagnosable, hence we have
the following assumption.

10A fault trace λi is a prefix of fault trace λ j if there is some (possibly empty) sequence of events λk that can extend λi such that λiλk = λ j.
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Assumption 3. The global system is always diagnosable for theM-based residual set.

However, if the diagnosis model is not diagnosable, we can define aggregate faults, where an aggregate fault is a
set of faults that are indistinguishable from each other. Our diagnosis approach can be applied to the modified fault
set that includes the aggregate faults. If an aggregate fault is diagnosed, that implies that one of its constituent faults
has occurred.

The diagnosis model S is split into n diagnosis submodels S1, S2, . . ., Sn, where each diagnosis submodel gets
a subset of the fault set, a subset of the measurement set, and a subset of the residual set. The desired distribution
of faults and measurements within each diagnosis submodel in initially provided by the user as input, e.g., based on
subsystems of the system.

Definition 17 (Diagnosis Submodel). A diagnosis submodel Si from a diagnosis model S = (F,Y,R, LF,R) is a tuple
(Fi,Yi,Ri, LFi,Ri ), where Fi ⊆ F, Yi ⊆ Y , and Ri ⊆ R.

We are interested in a set of diagnosis submodels having enough local diagnostic information to get the correct
global answer. This is referred to as global correctness, which says that for any fault that occurs, the union of
indistinguishable faults over all diagnosis submodels will be that fault itself.

Definition 18 (Global Correctness). A set of n diagnosis submodels {Si = (Fi,Yi,Ri, LFi,Ri ) : i = 1, . . . , n} from a
diagnosis model S = (F,Y,R, LF,R) is globally correct if for all f ∈ F,

⋃
Si
{ fi ∈ Fi : fi ∼Ri f } = { f }.

Note that global correctness enforces the constraint that the set of diagnosis submodels covers all faults, i.e., that
each fault f ∈ F is contained in at least one Fi. To keep local diagnosers as small as possible, we will enforce a stricter
constraint that each fault is contained in exactly one Fi, so that every fault has exactly one diagnosis submodel that is
responsible for it.

Diagnosis submodels may be locally diagnosable. A locally diagnosable diagnosis submodel is one in which its
own faults can be uniquely isolated using its own residuals.

Definition 19 (Local Diagnosability). A diagnosis submodel Si = (Fi,Yi,Ri, LFi,Ri ) is locally diagnosable if (∀ fi, f j ∈

Fi) fi , f j =⇒ fi �Ri f j. We say fault fi ∈ Fi is locally distinguishable from f j ∈ Fi if fi �Ri f j.

Note that the definition of local diagnosability for a diagnosis submodel is equivalent to the definition of diagnos-
ability for a diagnosis model (Definition 16). For a set of diagnosis submodels, local diagnosability is not a strong
enough condition to ensure global correctness. The problem is that for two different diagnosis submodels, Si and S j,
there may be some faults fi ∈ Fi and f j ∈ F j, such that both fi and f j produce the same effects on Ri. Hence, if fault f j

occurs in the system, the local diagnoser for Si will think that fault fi has occurred, which is not globally correct, i.e.,
we may have faults that are distinguishable from faults inside the diagnosis submodel, but not distinguishable from
faults outside the diagnosis submodel.

Example 13. Consider a diagnosis submodel Si where Fi = {A−1 ,Re+
1 }, Yi = {h1}, and Ri = {rh1 }. This diagnosis

submodel is locally diagnosable, because its two faults produce different effects on its single residual: A−1 produces
r+−

h1
and Re+

1 produces r0+
h1

(see Table 1). But every fault in F −Fi can also produce r0+
h1

, so if one of those faults occurs,
the diagnoser for Si would isolate Re+

1 as the fault, which is not globally correct.

Therefore, we require a notion of global diagnosability.

Definition 20 (Global Diagnosability). A diagnosis submodel Si = (Fi,Yi,Ri, LFi,Ri ) from diagnosis model S =

(F,Y,R, LF,R) is globally diagnosable if (∀ fi ∈ Fi, f j ∈ F) fi , f j =⇒ fi �Ri f j. We say fault fi ∈ Fi is globally
distinguishable from f j ∈ F if fi �Ri f j.

That is, a diagnosis submodel Si is globally diagnosable if all the faults Fi are distinguishable from every other
fault in F, i.e., all other faults in S , using only the residuals in Ri.

Example 14. Consider again the diagnosis submodel Si where Fi = {A−1 ,Re+
1 }, Yi = {h1}, and Ri = {rh1 }. This

diagnosis submodel is not globally diagnosable, because faults not included in Fi can produce the same observations
as a fault in Fi, as demonstrated in the previous example. Now consider that Yi = {h1, h2}, and Ri = {rh1 , rh2 }. Now
Re+

1 is distinguishable from Re+
12 and A−2 because the effect on rh2 is different, and Re+

1 is distinguishable from the
remaining faults not in Fi because it produces a change in rh1 before rh2 , whereas the others produce a change in rh2

before rh1 .
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If the diagnosis submodels can be structured such that all faults in F are covered and each diagnosis submodel Si is
globally diagnosable, then each diagnosis submodel will generate globally correct diagnoses without communicating
its diagnosis results to other diagnosis submodels. The following lemma shows that global diagnosability ensures the
desired quality of global correctness.

Lemma 1. If each diagnosis submodel in a set of n diagnosis submodels {Si = (Fi,Yi,Ri, LFi,Ri ) : i = 1, . . . , n}, from
a diagnosis model S = (F,Y,R, LF,R) where F = F1 ∪ F2 ∪ . . . ∪ Fn, is globally diagnosable, then the set of diagnosis
submodels is globally correct.

Proof. Given any fault f ∈ F, because all diagnosis submodels are globally diagnosable, the fault must be distin-
guishable from every local and non-local fault except for that fault itself. Hence, since f must be contained in at
least one diagnosis submodel, the union of all indistinguishable faults from each diagnosis submodel must equal { f }.
Therefore, the set of diagnosis submodels is globally correct.

In this paper, we focus on the problem where the diagnosis model S is diagnosable and the user provides the
initial distribution of the measurement and fault sets.11 Usually, each Si may not be globally diagnosable. The
globally diagnosable diagnosis submodel design problem is defined as determining, for each Si, the minimal set of
residuals in the complete set of possible residuals, R, to achieve global diagnosability. Formally, the problem is defined
as follows:

Problem (Globally Diagnosable Diagnosis Submodel Design). Given n diagnosis submodels, where Si = (Fi, Yi, Ri,
LFi,Ri ), i = {1, 2, . . . , n}, such that: (i) F = F1∪F2∪ . . .∪Fn; and (ii) ∀i , j ∈ {1, 2, . . . , n}, Fi∩F j = ∅; construct, for
each diagnosis submodel, a residual set Ri

+ ⊆ R such that: (iii) R+
i − Ri is minimal; (iv) Y+

i ⊆ Y are the measurements
involved in R+

i ; and (v) S′i = (Fi,Y+
i ,R

+
i , LFi,R+

i
) is globally diagnosable.

Initial distribution of measurements and faults within the diagnosis submodels are provided by the user. That
initial decomposition must fulfill constraints (i) and (ii) from the design problem, i.e., all faults in the diagnosis model
are covered by the diagnosis submodels, and each fault will be included in only one diagnosis submodel. The rest of
the constraints must be satisfied by the design approach. The algorithm we present in Section 6 solves the diagnosis
submodel design problem and determines the residuals needed for each diagnosis submodel Si to become globally
diagnosable. Our proposal in this work is to compute such residuals from submodels of the global system model,
thus allowing the implementation of residuals in a distributed way. The next section presents our structural model
decomposition approach to compute such submodels. Then, in Section 6 we use the submodels to design globally
diagnosable diagnosis submodels. Later, in Section 7, we use these globally diagnosable diagnosis submodels to
create local diagnosers which are used to define a comprehensive distributed diagnosis architecture.

4. Structural Model Decomposition

As we previously mentioned, residuals can be computed using either the global model of a system or a submodel
of this global model with enough analytical redundancy. Structural model decomposition methods, like PCs, have
been proposed to decompose a system model into minimal over-determined submodels that are sufficient for fault
diagnosis [11, 12, 14]. This decomposition into minimal submodels provides a natural way to distribute the residual
generation process into independent computational units, since residuals based on PCs are independent from one
another given the measurement set, Y . This approach is fundamentally different from a distributed observer scheme
based on a global model [38], where each local observer requires inputs from other local observers.

In this section, we first describe the fundamentals of the PCs approach, and then we generalize PCs to submodels
with multiple outputs. Later, in Section 6, we will show how this generalization is necessary for distributed diagnoser
design.

11In distributed diagnosis, the user typically provides an initial distribution of measurement and fault sets for the desired distribution of diag-
nosers. This is based on different criteria, e.g, the physical location of the components of the system. However, the approach presented in this paper
can also work without this initial partitioning by providing the initial sets of measurements/faults from Possible Conflicts, as explain in the next
section.
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4.1. Possible Conflicts
In this work, we are interested in generating submodels that allow for the computation of a given set of variables

that can be used for residual computation. To do it, the PCs approach considers sensor measurements in the global
system as potential local inputs to the submodel. Given the set of potential local inputs (selected from U ∪ Y) and
the set of variables to be computed by the submodel (selected from Y , since the submodels have to estimate measured
variables to compute residuals for such variables), we create from a causal modelM a causal submodelMYi , in which
Yi ⊆ Y is computed using Ci ⊆ C. In this way, each submodel computes its variable values independently from all
other submodels. A causal submodel can be defined as follows.

Definition 21 (Causal Submodel). A causal submodel MYi of a causal model M = (V,C,A) is a tuple MYi =

(Vi,Ci,Ai), where Vi ⊆ V , Ci ⊆ C, andAi ∩A , ∅.

When using measurements (from Y) as local inputs for a causal submodel, the causality of these constraints must
be reversed, and so, in general, Ai is not a subset of A.12 All remaining causal assignments in Ai will still be found
inA.

A PC is a special kind of causal submodel, where the output set, Yi ⊆ Y , is a singleton, and the set of constraints Ci

is the minimal set of constraints necessary to compute Yi. Hence, a PC is minimal regarding its constituent constraints.
This way, PCs are capable of computing, off-line, the set of minimal conflicts in a system model. Formally, a PC can
be defined as follows:

Definition 22 (Possible Conflict). A causal submodel,MYi = (Vi,Ci,Ai), is a possible conflict if |Yi| = 1, and there
is no other causal submodel,MY j = (V j,C j,A j), such that C j ⊆ Ci.

Example 15. Consider the three-tank system model. A PC,Mh1 , can be computed for the level in tank 1, h1, since h1
is a measured variable (Figure 5a shows the causal graph ofMh1 ). Variable h1 can be computed from causal constraint
α4. Constraint α4 needs the value of p1, which is computed from the causal constraint α1. Since u1 is an input variable,
which is known, and p1 is already computed by α1, the only unknown variable within α1 is p2. In the global model
approach, p2 is computed from causal constraint α2. However, in the PCs approach, since the measurements are
considered as inputs to the system, h2 is an input variable, and p2 can by computed from h2 by inverting causality in
α5. No unknown variables remain to be computed, consequently we have the PCMh1 . This PC can then be used to
compute a residual for the level of tank 1, with a reduced number of constraints than the global system model.

The procedure for generating a PC from a causal model is given as Algorithm 1 [18]. Given a causal modelM,
and an output variable to be computed y, the GeneratePC algorithm derives a causal submodelMi that computes y
using as local inputs only variables from U∗ = U ∪ (Y − {y}). We provide here a simplified version of the algorithm
presented in [18], and refer the reader to [18] for the extended algorithm and additional details. We briefly summarize
the algorithm below.

In Algorithm 1, the variables queue represents the set of variables that have been added to the submodel but have
not yet been resolved, i.e., they cannot yet be computed by the submodel. This queue is initialized to {y}, and the
algorithm then iterates until this queue has been emptied, i.e., the submodel can compute y using only variables in U∗.
For each variable v that must be resolved, we use the GetBestConstraint subroutine (Subroutine 2) to find the
constraint that should be used to resolve v in the minimal way.

The GetBestConstraint subroutine tries to find a constraint that completely resolves the variable, i.e., re-
solves v without further backward propagation (all other variables involved in the constraint are in Vi ∪Θ∪U∗). Such
a constraint may be the one that computes v in the current causality, if all needed variables are already in the submodel
(in Vi) or are available local inputs (in U∗); or such a constraint may be one that computes a measured output y∗ ∈ U∗,
in which case the causality will be modified such that y∗ becomes an input, i.e., the constraint in the new causality
will compute v rather than y∗. If no such constraint exists, then the constraint that computes v in the current causal
assignment is chosen, and further backward propagation will be necessary.

Clearly, there are many submodels that compute any given y using a given U∗. The global model is one of these
solutions. Algorithm 1 finds a minimal (with respect to subset of constraints) submodel that satisfies this, which is

12This process of causality inversion in the measurements is sometimes known as sensor dualization [39].
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Figure 5: Possible conflicts of the three-tank system.

guaranteed in Subroutine 2 by resolving a variable without further backward propagation whenever possible. Since
submodels computed by the algorithm are minimal, they are by definition possible conflicts. There may be multiple
submodels that are equally minimal (i.e., due to a choice of which local input to use), and the algorithm returns the
first that it finds.

The algorithm also generates only complete submodels, i.e., the submodels contain at least the variables needed to
compute its y. This is guaranteed because the algorithm only stops propagation at variables included in Vi∪Θ∪U∗ [18].

In the worst case, the algorithm must visit all variables and constraints. On each variable, Subroutine 2 is called,
which in the worst case considers all variables in Y ∪ U∗. So the overall worst-case time complexity is O((|V | + |E|) ·
|Y ∩ U∗|). Since (Y ∩ U∗) ⊂ V , the algorithm is polynomial in the model size. On average the connectivity among
constraints and variables will not be high, and the complexity will be much lower in practice.

Example 16. Applying algorithm 1,13 to the three-tank system model, we find a set of three minimal submodels, each
one of them estimating the level in one of the tanks (Figure 5 shows the causal graphs of these three PCs):

Mh1 = ({{p1} ∪ {A1,Re1,Re12} ∪ {u1, h2} ∪ {h1}}, {c1, c4, c5}, {α1, α4, α5})
Mh2 = ({{p2} ∪ {A2,Re2,Re12,Re23} ∪ {u2, h1, h3} ∪ {h2}}, {c2, c4, c5, c6}, {α2, α4, α5, α6})
Mh3 = ({{p3} ∪ {A3,Re3,Re23} ∪ {u3, h2} ∪ {h3}}, {c3, c5, c6}, {α3, α5, α6}).

The main advantage of the PC submodels is that, since they estimate a measured variable, they will be the source of
conflicts, i.e., they can be used to compute a residual for that variable with a reduced number of constraints compared

13Another algorithm for deriving PCs is given in [14]. This algorithm computes submodels considering all possible causal assignments, what
makes it more inefficient than the algorithm presented in this paper.
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Algorithm 1Mi = GeneratePC(M, y)
1: U∗ ← U ∪ (Y − {y})
2: Vi ← {y}
3: Ci ← ∅
4: Ai ← ∅
5: variables← Vi

6: while variables , ∅ do
7: v← pop(variables)
8: c← GetBestConstraint(v,Vi,U∗,A)
9: Ci ← Ci ∪ {c}

10: Ai ← Ai ∪ {(c, v)}
11: for all v′ ∈ Vc do
12: if v′ < Vi and v′ < Θ and v′ < U∗ then
13: variables← variables ∪ {v′}
14: end if
15: Vi ← Vi ∪ {v′}
16: end for
17: end while
18: Mi ← (Vi,Ci,Ai)

Subroutine 2 c = GetBestConstraint(v,Vi,U∗,A)
1: cv ← find c where (c, v) ∈ A
2: if Vcv − v ⊆ Vi ∪ U∗ then
3: return cv

4: else
5: for all y∗ ∈ Y∗ ∩ U∗ do
6: cy∗ ← find c where (c, y∗) ∈ A
7: if v ∈ Vcy∗ and Vcy∗ − v ⊆ Vi ∪ U∗ then
8: return cy∗

9: end if
10: end for
11: end if
12: return cv

to the global system model. We denote a residual computed from a PC as ry(Yi), where y is the measurement estimated
by the residual, and Yi refers to the submodel with those measurements as outputs,MYi . For example, rh1(h1) denotes
the residual that estimates h1 from submodelMh1 .

Similarly to what is shown in Section 2, fault signatures can be computed for the residuals of the PCs. However,
there is an important difference. Since residual orderings may be defined only within a given submodel, and residuals
are now decoupled in the submodels, we cannot define the orderings between residuals in different submodels. For
example, we cannot derive an ordering between rh1(h1) and rh2(h2) for Re+

12.

Example 17. The fault signatures derived for the residual set R = {rh1(h1), rh2(h2), rh3(h3)}. computed from the PCs, are
shown in Table 2. In this case, the PCs are able to decouple the effect of faults in the residuals, and so each residual
is only affected by a subset of the faults. For example, a decrease in the capacitance of tank 1, denoted by A−1 , causes
a discontinuous increase in the residuals related to tank 1 pressure, rh1(h1), followed by a smooth decrease, denoted by
the signature +-. But fault A−1 has no effect on residuals rh2(h2) and rh3(h3), as denoted by the 00 signature, since the
constraint c1, which contains fault parameter A1, is not included inMh2 orMh3 .

Consider the residual set given for the global model, M, of the three-tank system (Table 1). A diagnosis model
defined with these residuals is diagnosable. However, given the residual set for the PCs (see Table 2), the diagnosis
model is not diagnosable since fault Re+

1 cannot be distinguished from fault Re+
12, and fault Re+

2 cannot be distinguished
from fault Re+

23. For example, if Re+
1 occurs, then a 0+ will be observed on rh1(h1) activation. At this point, that

observation is consistent with both Re+
1 and Re+

12 occurring, and a diagnoser would not able to determine which has
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Table 2: Fault signatures and relative residual orderings for the set of PCs,Mh1 ,Mh2 , andMh3 , of the three-tank system.

Fault rh1(h1) rh2(h2) rh3(h3) Residual Orderings

A−1 +- 00 00 ∅
Re+

1 0+ 00 00 ∅
Re+

12 0+ 0- 00 ∅
A−2 00 +- 00 ∅
Re+

2 00 0+ 00 ∅
Re+

23 00 0+ 0- ∅
A−3 00 00 +- ∅
Re+

3 00 00 0+ ∅

occurred, because the deviation in rh2(h2) has not manifested yet. Since we would have to wait infinitely long to ensure
that no deviation occurs, Re+

1 cannot be distinguished from Re+
12. Consequently, with PCs we can decompose the

diagnosis model into smaller submodels, which can be used to implement residuals in a distributed way. However, this
decomposition can decrease the diagnosability compared to the diagnosis model. To avoid this problem, our proposal
in this work is to merge PCs, when necessary, so that distributed diagnosers can be implemented in a distributed way,
maintaining the diagnosability properties of the global diagnosis model, and without a central coordinator. Next, we
show our proposal for submodel merging. Later, in Section 6, we show how this merging process can be used to
design globally diagnosable diagnosis submodels.

4.2. Multi-output Possible Conflicts
By definition, possible conflicts are submodels computed as minimal subsets of constraints that estimate a single

measurement. Therefore, one PC is derived for each system measurement, and consequently can only be used to
compute one residual. In this work, we propose to use the PCs to derive submodels computed as minimal subsets of
constraints that estimate several measurements. We call these submodels multi-output PCs.

Definition 23 (Multi-output PCs). A causal submodel,MYi = (Vi,Ci,Ai), is a multi-output PC if |Yi| > 1, and there
is no other causal submodel,MY j = (V j,C j,A j), such that Yi = Y j and C j ⊆ Ci.

The advantage of generating multi-output PCs is that additional residuals may then be defined for all the measure-
ments within these multi-output PCs (not just one measurement as in the PCs), but at the same time will have a smaller
size than the global model. Multi-output PCs can be derived by merging two or more PCs. The merge operation ⊕
between two causal submodels is defined by Algorithm 3. As shown in the algorithm, the merged submodel must have
all the states, outputs, parameters, and constraints of its constituent submodels, and must have all the inputs, minus
those that have become outputs in the merged submodel. For the causal assignments, the merged submodel retains
all of the causal assignments of its constituent submodels except for those that are different in the two submodels.
This can happen only due to causality inversion of outputs in the global model, causing them to become inputs in the
submodel. The causal assignment for the related constraints must be in the form where the output variable belongs to
the output set of the merged submodel. Recall that we denote merged submodels by the set of outputs they compute,
e.g., the submodel formed by merging PCsMh1 andMh2 is denoted asMh1,h2 .14

Example 18. Figure 6 shows the causal graph of the multi-output PC Mh1,h2 . This submodel estimates two output
variables h1 and h2, contains two state variables p1 and p2, and the only measurement used as input is h3. A residual
may be defined for each measurement in each submodel. Recall that we denote a residual as ry(Yi), where y is the mea-
surement estimated by the residual, and Yi refers to the submodel with those measurements as outputs. Hence, rh1(h1,h2)

14Each residual is computed using a minimal submodel, i.e. a PC with only one output. When we merge several PCs, we have several outputs,
but the PC is still minimal in the sense that there is no subset of constraints capable to estimate the same set of outputs. As a consequence, given
the merging of two submodelsMh1 andMh2 , we can make reference to the resulting submodel asMh1 ,h2 without confusion (due to the kind of
causal model we are using).
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Figure 6: Multi-output PCMh1 ,h2 for the three-tank system.

denotes the residual that estimates the variable h1 from submodelMh1,h2 , and rh2(h1,h2) the residual that estimates the
variable h2 from submodelMh1,h2

Example 19. Using Algorithm 3 for the three-tank system, we obtained the following multi-output PCs:

Mh1,h2 = ({{p1, p2} ∪ {A1, A2,Re1,Re2,Re12,Re23} ∪ {u1, u2, h3} ∪ {h1, h2}}, {c1, c2, c4, c5, c6}, {α1, α2, α4, α5, α6})
Mh1,h3 = ({{p1, p3} ∪ {A1, A3,Re1,Re3,Re12,Re23} ∪ {u1, u3, h2} ∪ {h1, h3}}, {c1, c3, c4, c5, c6}, {α1, α3, α4, α5, α6})
Mh2,h3 = ({{p2, p3} ∪ {A2, A3,Re2,Re3,Re12,Re23} ∪ {u3, u3, h1} ∪ {h2, h3}}, {c2, c3, c4, c5, c6}, {α2, α3, α4, α5, α6}).

As an example, Table 3 shows the fault signatures and residual orderings derived for submodelsMh1,h2 andMh3 ,
i.e., PCs Mh1 and Mh2 are merged. For this scenario, R = {rh1(h1,h2), rh2(h1,h2), rh3(h3)} and now we have a trade-off
between using the global model and using minimal submodels. As a consequence of mergingMh1 andMh2 , residual
orderings can now be computed between residuals rh1(h1,h2) and rh2(h1,h2).

Table 3: Fault signatures and relative residual orderings for the submodelsMh1 ,h2 andMh3 , of the three-tank system.

Fault rh1(h1 ,h2) rh2(h1 ,h2) rh3(h3) Residual Orderings

A−1 +- 0+ 00 rh1(h1 ,h2) ≺ rh2(h1 ,h2)

Re+
1 0+ 0+ 00 rh1(h1 ,h2) ≺ rh2(h1 ,h2)

Re+
12 0+ 0- 00 ∅

A−2 0+ +- 00 rh2(h1 ,h2) ≺ rh1(h1 ,h2)

Re+
2 0+ 0+ 00 rh2(h1 ,h2) ≺ rh1(h1 ,h2)

Re+
23 0+ 0+ 0- rh2(h1 ,h2) ≺ rh1(h1 ,h2)

A−3 00 00 +- ∅
Re+

3 00 00 0+ ∅

Now that we have presented the fundamental ideas of structural model decomposition, PCs, and our proposal for
PC merging into multi-output PCs, the next section presents our distributed diagnosis architecture using PCs.

5. Distributed Diagnosis Architecture

The architecture of the proposed distributed diagnosis framework is shown in Fig. 7. This framework has been
implemented in MATLAB and it runs, given the inputs, in a completely automatic way. In the architecture, each local
diagnoser takes a subset of the inputs, Ui, and outputs, Yi, of the system and provides diagnosis results, i.e., U1 and Y1
represent a subset of the inputs and a subset of the outputs, respectively, used by local diagnoser 1. For each one of the
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Algorithm 3MYi, j =MYi ⊕MY j

1: Xi, j ← Xi ∪ X j

2: Θi, j ← Θi ∪ Θ j

3: Ui, j ← (Ui ∪ U j) − (Yi ∪ Y j)
4: Yi, j ← Yi ∪ Y j

5: Vi, j ← Xi, j ∪ Θi, j ∪ Ui, ju ∪ Yi, j

6: Ci, j ← Ci ∪C j

7: Ai, j ← ∅
8: for c ∈ Ci, j do
9: if c ∈ Ci and c < C j then

10: αi, j ← find (c, v) ∈ Ai

11: else if c < Ci and c ∈ C j then
12: αi, j ← find (c, v) ∈ A j

13: else
14: vi ← find v where (c, v) ∈ Ai

15: v j ← find v where (c, v) ∈ A j

16: if vi ∈ Yi, j then
17: αi, j ← (c, vi)
18: else if v j ∈ Yi, j then
19: αi, j ← (c, v j)
20: else
21: αi, j ← (c, vi)
22: end if
23: end if
24: Ai, j ← Ai, j ∪ {αi, j}

25: end for
26: MYi, j = (Vi, j,Ci, j)

local diagnosers we can distinguish between the off-line modules (in dashed lines) and the on-line modules (in solid
lines). The off-line modules are related with the design of the distributed diagnosis system, and are used to implement
the on-line modules that are used for the diagnosis process.

Regarding the off-line modules, we start with a global model of the system, and compute the Possible Conflicts.
The PCs are computed using the approach presented in Section 4, however, our framework is independent of this, and
any other structural decomposition method could be used to decompose the system instead of the PCs [29]. Based on
the computed PCs and the initial fault/measurements partition provided by the user, the diagnosis submodel design
module (Section 6), first computes the initial submodels for each diagnosis submodel (by merging PCs if necessary),
and then determines the PCs that need to be merged with the initial submodels to create globally diagnosable diag-
nosis submodels. Once the globally diagnosable diagnosis submodels have been designed, the result is used in three
different modules: (i) the residual design module (Section 6), which implements the residual generators for system
tracking for each local diagnoser; (ii) the diagnoser implementation module (Section 7), which implements the event-
based local diagnosers for fault isolation; and (iii) the local parameter estimator design module (Section 8), which
implements the local parameter estimators for each fault within each local diagnoser for fault identification. There is
one main assumption in our approach, that is also present in other distributed diagnosis approaches, such as [40]:

Assumption 4. The observation system is complete, reliable, and all symbol generation is correct.

As a consequence we assume we can observe every event, we do not miss observations, and the communication
process is efficient. Additionally, we can also state another assumption:

Assumption 5. A communication channel between two components is bounded.

Hence the communication will not introduce new or spurious states in the system.
Regarding the on-line modules, our implementation is similar to the qualitative fault isolation (QFI) framework

described in [7, 9], but in this case we use submodels for fault detection and identification, instead of the global
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Figure 7: Architecture of the event-based distributed diagnosis approach.

model. First, the tracking module estimates the output measurements, Ŷi, defined for each local diagnoser. Tracking is
performed in discrete-time using standard techniques. Typically, a robust method, such as the extended or unscented
Kalman filter [41], or the particle filter [42], provides tracking of the nominal system behavior in the presence of
process noise and discretization error. Then, output estimates Ŷi are compared against the real measurements of the
system Yi using a statistical test within the fault detection module. In our approach, the fault detection module employs
the Z-test to look for nonzero residual signals, as described in [43]. Because we use a simulation for predictions,
fault detection can be achived very quickly. A statistically significant nonzero value for the residual, Ri, indicates a
fault occurrence and triggers the symbol generation module, where the measurement and slope values of the residual
signals, Ri, are converted to qualitative values, σi. These deviations are then used by the event-based diagnoser to
isolate faults. Fault candidates whose predicted signatures remain consistent with the observed measurements are
considered fault candidates, Fi, others are dropped. Finally, from the subset Fi of fault candidates, the parameter
estimation block performs fault identification to determine the fault that has occurred in the system (described by
the parameter associated to the fault, θ∗i ), together with its estimation accuracy, E2

i . In our framework, optimization
is done by using the local parameter estimator and iteratively modifying the value of the parameter to minimize
the difference between the estimated outputs and the measured outputs, although any other appropriate parameter
estimation technique could be used. The next three sections develop further each part of the proposed architecture.
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6. Globally Diagnosable Diagnosis Submodel Design

Recall that the globally diagnosable diagnosis submodel design problem is to find for each diagnosis submodel
the minimal set of residuals needed to make the diagnosis submodel globally diagnosable. A solution to this problem
is one in which each diagnosis submodel is globally diagnosable. An optimal solution is one in which the number
of residuals assigned to each diagnosis submodel is minimal, i.e., there is no smaller set of residuals for any one
diagnosis submodel for which it is also globally diagnosable. There may be several optimal solutions.

We can treat this design problem as a search problem, where the search space for a given diagnosis submodel is
defined by the residuals that may be added to the diagnosis submodel. However, this space is extremely large, because
the number of possible submodels, and, consequently, the size of the complete residual set, grows exponentially with
the number of measurements. For a system with |Y | measurements the number of possible submodels is 2|Y | − 1, and
the number of residuals over all possible submodels is |Y | × 2|Y |−1.

The advantage of PCs is that, since measurements are used as local inputs to decompose the system, they are
capable of decoupling the effects of faults in the system. This results in an improvement in diagnosability in a local
sense. The intuition, then, is that including PC-based residuals will lead to improved diagnosis submodel design (i.e.,
fewer residuals) because of this improvement in diagnosability, thus requiring less search overall.

Example 20. Let us assume that the three-tank system is split into three diagnosis submodels, S1, S2, and S3, where
for S1, F1 = {A−1 , Re+

1 , Re+
12}, Y1 = {h1}; for S2, F2 = {A−2 , Re+

2 , Re+
23}, Y2 = {h2}; and for S3, F3 = {A−3 , Re+

3 },
Y3 = {h3}. Also assume that we use the M-based residuals, so R1 = {rh1 }, R2 = {rh2 }, and R3 = {rh3 }. Analyzing
global diagnosability, we see that none of the diagnosis submodels is globally diagnosable, i.e., we will have to add
new residuals to each diagnosis submodel in order to satisfy our design constraints. For example, consider diagnosis
submodel S3. Looking at Table 1, we see that the diagnosis submodel is not globally diagnosable, since effects
produced by Re+

3 on rh3 are not unique. Now assume we use the PC-based residuals, R1 = {rh1(h1)}, R2 = {rh2(h2)}, and
R3 = {rh3(h3)}. We see that now S3 is globally diagnosable because only one nonlocal fault, Re+

23, produces an effect on
rh3(h3), and it is a different effect from those produced by the local faults. So if S3 uses the PC-based residual instead
of the global model-based residual, it produces an improved diagnosis submodel design. However, the other diagnosis
submodels are still not globally diagnosable, and cannot be made so by including any other PC-based residual, because
those diagnosis submodels contain the faults that make the system as a whole nondiagnosable using only the PC-based
residuals.

As shown in the previous example, PC-based residuals can improve global diagnosability over the global model
in some diagnosis submodels, but typically it is not enough to guarantee global diagnosability for all diagnosis sub-
models. This suggests that we require a more general approach that considers residuals from the complete set, R,
considering all possible submodels.

As previously pointed out, the size of the search space is dependent on the number of possible residuals, and the
complete set is very large. Further, there is much overlap of information between the different residuals, for example,
compare Tables 1, 2, and 3. So, instead of searching over the residual space (|Y | × 2|Y |−1), we perform a search over
the measurement space (2|Y | − 1), which is much smaller than the residual space, and define residuals in a particular
way. Specifically, given a set of measurements Yi, we use the residuals for the submodel that includes exactly the
measurements in Yi as outputs, i.e., for Yi we use the residual set {ry(Yi) : y ∈ Yi} (recall that y refers to the measured
variable estimated by the residual, and Yi refers to the submodel with those measurements as outputs, MYi , used
to compute the residual). For example, if Yi = {h1, h2}, then Ri = {rh1(h1,h2), rh2(h1,h2)}. This approach significantly
reduces the search space, because we accept only diagnosis submodel definitions for which the residuals are those
from the submodel defined by the diagnosis submodel measurements. Further, by defining residuals in this way, each
local diagnoser will have its own submodel to compute residuals independently of other local diagnosers. This is in
contrast to an approach where residuals are computed in a centralized way [8, 10], and allows the local diagnosers to
be independent of each other for residual generation. As previously described in Section 3, the diagnosers will become
independent of each other with respect to fault isolation once they have been designed to be globally diagnosable.

The search problem for a diagnosis submodel is now defined by (i) the initial state, which is from the user-provided
initial diagnosis submodel definition;15 (ii) the successor function, which adds a measurement to the diagnosis sub-
model, thus reformulating the submodel and defining a new set of residuals, (iii) the goal state, which is a derived

15The initial diagnosis submodel definition is provided by the user based on a desired distribution of the components in the system. Typically,
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diagnosis submodel that is globally diagnosable; and (iv) the path cost, which is the number of measurements asso-
ciated with the diagnosis submodel. The search problem is to find the globally diagnosable extension of the given
diagnosis submodel with the fewest measurements added to all of the diagnosis submodels.

Using this formulation, breadth-first search (BFS) will find the optimal solution since the path costs are uniform.
BFS will also find the optimal solution using the alternate formulation that searches over the complete residual space.
As a much more efficient alternative, we present here a greedy algorithm that, in our experience, has a high proba-
bility of also finding the optimal solution. Our heuristic is to compute the number of faults which are not globally
distinguishable when adding a proposed measurement. The locally optimal action is to add the measurement that
minimizes this number.

The greedy diagnosis submodel design approach is shown in Algorithm 4. The algorithm is provided as inputs an
initial assignment of faults and measurements to diagnosis submodels. It first computes the single-output PCs for all
the measurements, storing in M. For each diagnosis submodel, we first construct the multi-output PC for its current
set of measurements using the submodel merging algorithm, and then extract its residuals (recall that ry(Yi) refers to
the residual for measurement y in submodelMYi ). We then compute the subset of measurements over which we will
consider adding to the diagnosis submodel as Y ′ = Y − Yi.16 We then identify the best measurement within Y ′ to add
to Yi, using the FindBestY subroutine, which implements our heuristic. For each possible measurement to add, this
subroutine constructs the new set of residuals, then determines the faults, F∗i , that are not globally distinguishable for
the diagnosis submodel and this residual set. To do this, the algorithm constructs new diagnosis submodels by merging
the previous submodel, MYi , with the PC for the new measurement, My. The fault language for the new diagnosis
submodel is then derived to establish distinguishability properties. The measurement that results in the smallest F∗i
(this is the score variable in our algorithm) is selected as the best measurement and becomes the output y∗i . We then
update Yi, reconstruct the residual set for the new measurement set, and continue in this fashion until Si is globally
diagnosable.

GenerateLocalLanguage, given as Subroutine 6, performs a syntactic transformation on the global fault
language for a model to derive a local fault language for its submodel. Within each trace, the fault signature is
replaced by the version for the submodel by changing the subscript to that of the submodel. This is only a syntactic
transformation; here we take advantage of the fact that residuals are defined in a consistent way between models and
submodels, where the residual deviation for a measurement in a local submodel will be the same as its deviation in
the global model (e.g., compare Tables 1 and 3), and if the measurement does not appear in the local submodel, there
will be no associated residual deviation (it is replaced by the empty trace ε).

Based on our assumptions, the design algorithm will always find globally diagnosable diagnosis submodels, as
stated in Theorem 1. This result applies equally to the BFS version of the design algorithm.

Theorem 1. For a set of n diagnosis submodels {Si = (Fi,Yi,Ri,∅) : i = 1, . . . , n}, Algorithm 4 always returns
globally diagnosable diagnosis submodels.

Proof. For a given diagnosis submodel, Si, the algorithm continually adds y ∈ Y to Yi until the diagnosis submodel is
globally diagnosable. This will always terminate because, in the worst case, all y ∈ Y are added to Yi, in which case
the global model is recovered, which is diagnosable (Assumption 3 in Section 3).

The worst-case performance of both algorithms occurs when all the system measurements are added to a diagnosis
submodel, which refers to the case where the diagnosis problem cannot be decomposed. In the worst case, the BFS
algorithm explores a space of size O(2|Y |), whereas the greedy algorithm explores only a space of size O(|Y |). With
appropriate sensors, this is a very unlikely scenario. Because the greedy algorithm adds measurements incrementally,
it is, in general, non-optimal, but here we trade off optimality for computational efficiency. However, as we will see in
the following examples and in the case study, the greedy algorithm still obtains the optimal solution as determined by

this distribution is based on the proximity of the components and often the physical connectivity in the system. For example, in the three-tank
system, diagnosis submodel S1 is defined as the tank 1 and its connecting pipes. The PC decomposition algorithms can also help the user to define
an initial coupling of components into diagnosis submodels.

16If Y − Yi is too large, a subset of the measurements that are considered to be more useful, according to some heuristic, can be used instead. An
example of such a heuristic is the diagnosis submodel distance heuristic developed in [8], in which preference is given to measurements that are in
neighboring diagnosis submodels.
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Algorithm 4 {S ∗i }
n
i=1 = GreedyDesign(M, LF,R, {S i = (Fi,Yi,∅,∅)}ni=1)

M← ∅
for all y ∈ Y do
My ← GeneratePC(M, y)
M←M ∪ {My}

end for
for all Si ∈ S do
MYi ← (∅,∅)
for all yi ∈ Yi do
MYi ←M

′ ⊕Myi

end for
Ri ← {ry(Yi) : y ∈ Yi}

LFi ,Ri ← GenerateLocalLanguage(LF,R,Y, Fi,Ri,Yi)
while Si not globally diagnosable do

Y ′ ← Y − Yi

(y∗i ,M
∗
i )← FindBestY(M, LF,R,MYi , F, Fi,Y ′,Yi)

Yi ← Yi ∪ {y∗i }
MYi ←M

∗
i

Ri ← {ry(Yi) : y ∈ Yi}

LFi ,Ri ← GenerateLocalLanguage(LF,R,Y, Fi,Ri,Yi)
end while
S ∗i ← (Fi,Yi,Ri, LFi ,Ri )

end for

Subroutine 5 (y∗i ,M
∗
i )← FindBestY(M, LF,R,MYi , F, Fi,Y,Yi)

for all y ∈ Y − Yi do
M∗

i ←MYi ⊕My

Ri ← {ry′(Yi∪{y}) : y′ ∈ Yi ∪ {y}}
LFi ,Ri ← GenerateLocalLanguage(LF,R,Y, Fi,Ri,Yi)
F∗i ← { fi : fi ∼Ri f j for fi ∈ Fi, f j ∈ F, and fi , f j}

scorey ← |F∗i |
end for
y∗i ← y such that scorey is minimum

Subroutine 6 LFi,Ri ← GenerateLocalLanguage(LF,R,Y, Fi,Ri,Yi)
for all f ∈ Fi do

L f ,Ri ← ∅
for all λ ∈ L f ,R do

for all y ∈ Y do
if y ∈ Yi then

replace rs1 s2
y(Y) ∈ λ with rs1 s2

y(Yi)
for all s1 s2

else
replace rs1 s2

y(Y) ∈ λ with ε for all s1 s2

end if
end for
L f ,Ri ← L f ,Ri ∪ {λ}

end for
end for
LFi ,Ri ← {L f ,Ri } f∈Fi
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BFS. Both algorithms have additional work at each point in the search space explored, to compute the corresponding
submodel, compute the local fault language, and check diagnosability. In an overall complexity analysis this appears
as an additional factor that is not relevant in comparing the performance of BFS and the greedy algorithm.

Example 21. We apply this algorithm to the three-tank system previously described. The system is split into three
diagnosis submodels, S1, S2, and S3, where for S1, F1 = {A−1 , Re+

1 , Re+
12}, Y1 = {h1}, for S2, F2 = {A−2 , Re+

2 , Re+
23},

Y2 = {h2}, and for S3, F3 = {A−3 , Re+
3 }, Y3 = {h3}, and we use the PC-based residuals, R1 = {rh1(h1)}, R2 = {rh2(h2)},

and R3 = {rh3(h3)}. As a result, we have to add one residual only to the diagnosis submodels S1 and S2, and none
have to be added to diagnosis submodel S3, because, as previously shown, S3 is already globally diagnosable with
only rh3(h3). Using both the greedy algorithm and BFS, diagnosis submodel S1 gets residuals rh1(h1,h2) and rh2(h1,h2), and
diagnosis submodel S2 gets residuals rh2(h2,h3) and rh3(h2,h3). This improves the algorithm presented in [10], because in
that case, diagnosis submodel S2 needs three residuals, and diagnosis submodel S3 needs two residuals, so the size of
the event-based diagnosers will be smaller.

Example 22. As another design scenario, consider now the three-tank system with F = {A−1 , A−2 ,A−3 ,Re+
12,Re+

23} and
Y = {h1,h2,h3}. Assume that the system is again split into three diagnosis submodels, S1, S2, and S3, where for S1,
F1 = {A−1 ,Re+

12}, Y1 = {h1}, for S2, F2 = {A−2 ,Re+
23}, Y2 = {h2}, and for S3, F3 = {A−3 }, Y3 = {h3}. If we use the PC-based

residuals, R1 = {rh1(h1)}, R2 = {rh2(h2)}, and R3 = {rh3(h3)}, we see that all three diagnosis submodels, S1, S2, and S3, are
globally diagnosable. This is clear from the set of fault signatures obtained using these residuals, shown in Table 2.
The PCs decouple the diagnosis submodels to the extent that only the Re+

i j faults affect multiple diagnosis submodels,
and the effects they produce are unique. Hence, global diagnosability is satisfied and the diagnosis submodel design
algorithm is not needed. For this design scenario, our PC-based approach also improves over the approach in [10],
because in that case, diagnosis submodel S1 needs two residuals, and diagnosis submodel S2 also needs two residuals,
so the size of the event-based diagnosers will be reduced and the search process will be completely avoided.

As seen in the examples, by using PCs the design approach developed in this paper improves upon the design
results in [10]. Moreover, in [10], each diagnosis submodel uses the global model for residual generation. In the
approach developed in this paper, however, each diagnosis submodel needs only a submodel for residual generation.
So, residual generation could be implemented in a distributed way and will be more efficient.

7. Diagnoser Implementation

In this section, we describe the construction of the event-based diagnosers for fault isolation, built from the de-
signed diagnosis submodels. An event-based diagnoser implements a diagnosis submodel, and we describe a proce-
dure for transforming a diagnosis submodel into an event-based diagnoser. We then show that if there is a correspon-
dence between diagnosability of a diagnosis submodel and unique isolation of faults by its diagnoser, and that if the
diagnosis submodel is globally diagnosable, this unique isolation result will be globally correct.

The goal of an event-based diagnoser for a set of faults and residuals is to determine which faults are consistent
with the observed sequence of residual deviation events. We define a diagnoser in our framework [9] as follows.

Definition 24 (Diagnoser). A diagnoser for a fault set F and residual set R is a tuple DF,R = (S , s0,Σ, δ, A,D,G)
where S is a set of states, s0 ∈ S is an initial state, Σ is a set of events, δ : S × Σ→ S is a transition function, A ⊆ S is
a set of accepting states, D ⊆ 2F is a set of diagnosis sets, and G : S → D is a diagnosis map.

A diagnoser is a finite automaton extended by a set of diagnosis sets and a diagnosis map. As with fault models,
events correspond to residual deviations. From the current state, a residual deviation event causes a transition to a new
state. The diagnosis set for that new state, defined by the diagnosis map, represents the set of faults that are consistent
with the sequence of events seen up to the current point in time. Under the single fault assumption, the space of
possible diagnosis sets is the power set of faults, 2F . We denote the diagnoser result (a diagnosis set) for some trace
λ as DF,R(λ), which is G(s) for the s reached by λ. If there is no state corresponding to that trace, the diagnoser will
block, and the result is ∅. Accepting states correspond to fault isolation results.

We want to construct only correct diagnosers, i.e., ones that faithfully capture the corresponding fault language
and correctly define the diagnosis map.
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Figure 8: Fragment of the three-tank system global diagnoser for F = {A−2 ,Re+
2 ,Re+

23} and R = {rh1 , rh2 , rh3 }.

Definition 25 (Correctness). A diagnoser DF,R is correct, if (i) there is a corresponding s ∈ S only for prefixes of
traces in LF,R, (ii) for all f ∈ F and s ∈ S , f ∈ G(s) if and only if there is a λ v λ f ,R ∈ LF,R that reaches s, and (iii) for
all λ f ,R ∈ LF,R, the state reached by λ f ,R, is in A.

That is, a diagnoser is correct if it captures all valid traces, G(s) contains the correct faults, and fault traces
correspond to accepting states. Here, we denote a that a diagnoser is correct with the ∗ superscript, e.g., D∗F,R. It is
trivial to construct a correct diagnoser given a fault language; for a detailed procedure see [9].

Example 23. A fragment of the resulting centralized diagnoser for the three-tank system is given in Fig. 8, for
F = {A−2 ,Re+

2 ,Re+
23} and R = {rh1 , rh2 , rh3 }. For example, consider the trace r0+

h2
r0+

h1
r0+

h3
. After r0+

h2
, two faults are

consistent, Re+
2 and Re+

23, and diagnoser moves to a state where these two faults are contained in the diagnosis set.
After r0+

h1
, the diagnoser moves to a new state and the corresponding diagnosis set remains the same. After r0+

h3
, now

only Re+
2 is consistent, and as this trace now corresponds to a fault trace, the state is an accepting state.

The same procedure to construct a correct centralized diagnoser applies to constructing a local diagnoser, as we
simply use the diagnosis submodel with the local fault set Fi and local residual set Ri to obtainD∗Fi,Ri

.

Example 24. The local diagnosers for the diagnosis submodel design example from the previous section are given
in Fig. 9. Recall that diagnosis submodels S1 and S2 need to add one residual to become globally diagnosable, and
diagnosis submodel S3 does not need any; whereas the centralized diagnoser needs all the global model residuals.

A diagnoser isolates a fault if it accepts all possible valid traces for the fault and the accepting states map to
diagnosis sets containing the fault.

Definition 26 (Isolation). A diagnoserDF,R isolates fault f ∈ F ifDF,R accepts all λ f ,R ∈ L f ,R and for each s ∈ A that
accepts some λ f ,R, f ∈ G(s).

A correct diagnoser will clearly isolate all its faults; this is guaranteed by the second and third conditions of
Definition 25.

Lemma 2. IfDF,R is correct,DF,R isolates all faults f ∈ F.

Unique isolation corresponds to diagnosis model diagnosability. A diagnoser uniquely isolates a fault if each
accepting state maps to the single fault.

Definition 27 (Unique Isolation). A diagnoser DF,R uniquely isolates fault f ∈ F if DF,R accepts all λ f ,R ∈ L f ,R and
for each s ∈ A that accepts some λ f ,R, { f } = G(s).

We can prove that a correct diagnoser D∗F,R uniquely isolates all f ∈ F if and only if S is diagnosable (adapted
from [9]).
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Figure 9: Local diagnosers for the three-tank system for S1, F1 = {A−1 ,Re+
1 ,Re+

12}, R1 = {rh1(h1 ,h2), rh2(h1 ,h2)}; S2, F2 = {A−2 ,Re+
2 ,Re+

23}, R2 =

{rh2(h2 ,h3), rh3(h2 ,h3)}; and S3, F3 = {A−3 ,Re+
3 }, R3 = {rh3(h3)}.

Theorem 2. A diagnosis model S = (F,Y,R, LF,R) is diagnosable if and only ifD∗F,R uniquely isolates all f ∈ F.

Proof. Assume some fi ∈ F with fault trace λ fi,R ∈ LF,R. D∗F,R accepts λ fi,R and for the corresponding accepting state
sa, fi ∈ G(sa) by Lemma 2 and Definition 26. Since F is diagnosable, there is no f j ∈ F with fault trace λ f j,R ∈ L f j,R

where λ fi,R v λ f j,R. Therefore, f j < G(sa). So, G(sa) = fi and D∗F,R uniquely isolates each f ∈ F. Assume that
D∗F,R uniquely isolates each f ∈ F. Then each possible fault trace λ fi,R has an associated accepting state sa, where
G(sa) = fi. Thus, there cannot be some λ v λ fi,R for fi , f j that can reach sa, otherwise f j ∈ G(sa). Therefore, fi � f j,
so F is diagnosable. Thus S is diagnosable if and only ifD∗F,R uniquely isolates each f ∈ F.

We can apply Theorem 2 directly to a diagnosis submodel and local diagnosability, since for a diagnosis submodel,
local diagnosability is equivalent to diagnosability (recall Definitions 16 and 19), to arrive at the following corollary.

Corollary 1. A diagnosis submodel Si is (locally) diagnosable if and only ifD∗Fi,Ri
uniquely isolates all fi ∈ Fi.

This is simply a restatement of Theorem 2 as applied to a diagnosis submodel, so no proof is necessary. In
Section 3, we showed that if all diagnosis submodels are globally diagnosable, then the set of diagnosis submodels is
globally correct, i.e., they have the potential to generate the correct diagnosis. Given correct local diagnosers, we can
show now that the correct global result will be generated.

Theorem 3. If each diagnosis submodel in a set of n diagnosis submodels {Si = (Fi,Yi,Ri, LFi,Ri ) : i = 1, . . . , n}, from
a diagnosis model S = (F,Y,R, LF,R) where F = F1 ∪ F2 ∪ . . . ∪ Fn, is globally diagnosable, then for all faults f ∈ F
occurring with local fault traces λ f ,R1 , λ f ,R2 , . . ., λ f ,Rn ,

⋃
iD
∗
Fi,Ri

(λ f ,Ri ) = { f }.

Proof. If all Si are globally diagnosable, then all Si are also locally diagnosable, since Fi ⊆ F, by the definition of
local diagnosability (Definition 19). Since they are locally diagnosable, then, by Corollary 1,D∗Fi,Ri

uniquely isolates
all faults in Fi. So, if some f ∈ F occurs, for Si, if f ∈ Fi, then D∗Fi,Ri

(λ f ,Ri ) = { f } because it must uniquely isolate
f . If f < Fi, then since Si is globally diagnosable, f must be distinguishable from every fault in Fi using Ri, so the
diagnoser will block and D∗Fi,Ri

(λ f ,Ri ) = ∅. Therefore, since f must be contained in at least one Fi, the union of all
local diagnoses is always { f }.
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The local event-based diagnosers work as follows. Each local diagnoser starts in its initial state. A local residual
deviation event is received by its corresponding diagnoser. If there is a matching event from the current state, a local
diagnoser will follow that path to the next state, and remain active. If not, the local diagnoser will block, and its
diagnosis result will be ∅. The process continues until a local diagnoser reaches an accepting state. At this point,
a globally correct diagnosis is known, if this diagnosis submodel was designed to be globally diagnosable. If so,
no other local diagnoser may reach an accepting state, since no two diagnosis submodels share a fault. Therefore, a
globally correct diagnosis result is achieved without the use of a centralized coordinator. If the diagnosis submodels
are not globally diagnosable, then two or more local diagnosers may both reach an accepting state and a coordinator
would be needed to resolve the ambiguity. This holds by Theorem 3.

If a local diagnoser has not yet reached an accepting state, but has a unique diagnosis, a globally correct diagnosis
result may only be declared (under the single fault assumption) if all other local diagnosers have blocked, but in this
case, some kind of communication between the local diagnosers would be necessary to broadcast when they have
blocked. A globally correct diagnosis result may otherwise only be declared when all residuals that are predicted to
deviate for a particular fault do deviate, i.e., an accepting state is reached. These conditions correspond directly to
those outlined in [8] in the absence of the event-based framework.

We can prove that the distributed approach is more scalable than the centralized approach, in terms of the diag-
nostic information they need to represent. We do this using the minimal representation of the diagnostic information
in the form of a |Fi||Ri| matrix to capture the fault signatures and |Fi| matrices of size |R|2 to represent the residual
orderings (for each fault, residual orderings can be compactly represented in an Boolean |Ri| × |Ri| matrix where a 1
in entry (n,m) means there is an ordering rn ≺ rm, and a 0 entry means there is not); here, the total minimum space
required by a diagnoser for Fi and Ri is |Fi|(|Ri| + |Ri|

2). A centralized diagnoser will require |F|(|R| + |R|2) space and
the local diagnosers will require

∑
i |Fi|(|Ri| + |Ri|

2) space.

Theorem 4. The total information requirements of a distributed diagnoser design will grow more slowly than the
information requirements of a centralized diagnoser design as the size of the system increases.

Proof. Assume that a distributed diagnoser design is possible, i.e., that for each Ri, |Ri| < |R| (recall that the design
procedure guarantees that |Ri| ≤ |R|, because |Yi| ≤ |Y |). In the worst case, |Ri| = |R| − 1. The centralized diagnoser
requires |F|(|R| + |R|2) space, and the local diagnosers

∑
i |Fi|(|R| − 1 + (|R| − 1)2) = |F|(|R| − 1 + (|R| − 1)2) space

(recall that we partition the fault set, so
∑

i |Fi| = |F|). If the size of the fault set grows, i.e., |F| becomes |F| + 1, the
centralized approach requires (|F|+1)(|R|+ |R|2) space and the distributed approach requires (|F|+1)(|R|−1+(|R|−1)2)
space. The global approach grows by a larger factor. If the size of the measurement set grows, so R increases in size,
i.e., |R| becomes |R| + 1, then the centralized approach requires (|F|)(|R| + 1 + (|R| + 1)2) space and the distributed
approach requires (|F|)(|R| + |R|2) space, and here again, the centralized approach grows by a larger factor. Therefore
the distributed approach scales better than the centralized approach as the size of the system increases.

8. Distributed Fault Identification

Once the fault has been isolated by the local event-based diagnoser as described in the previous section, the next
step for our distributed diagnosis system is to perform distributed fault identification. In this section, we develop
our proposal to include fault identification within the event-based distributed diagnosis framework. To do this, we
combine our qualitative fault isolation approach with a quantitative fault identification approach that uses minimal
parameter estimators similar to those presented in [15]. Minimal parameter estimators can perform fault identification
in an efficient, distributed way. The basic idea underlying minimal parameter estimators is to use the PC submodels
to solve a nonlinear optimization problem, for one parameter within the PC, based on its input and output values.

Example 25. Each PC contains a subset of the parameters in the system, and can be used to estimate any combination
of these subsets of parameters. For example, PC Mh1 can be used to estimate the subset of parameters {A1}, {Re1},
{Re12}, {A1,Re1}, {A1,Re12}, {Re1,Re12}, or {A1,Re1,Re12}. However, since we work under the single fault assumption,
we consider that each PC will only be used to estimate one parameter from the set Θi inMh1 .

We define a nonlinear optimization problem using the inputs Ui and the outputs Yi of the PC to estimate the value
of the parameter, θ j ∈ Θi related to the fault f j. More formally, the parameter estimation problem using a PC, PCi,
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computes the value of the unknown parameter, θ j ∈ Θi, given the values Ui and Yi, by solving the following nonlinear
optimization problem:

θ̂ j = argmin
θ j

t∑
k=1

(Yi(k) − Ŷi(k))2, (1)

Ŷi(k) = eMYi
(Ui(k), θ̂ j), (2)

where eMYi
(Ui(k), θ j) is a local estimation function (that we call a local parameter estimator) obtained directly from

the constraints of the PCMYi , that computes an estimation of the outputs of the submodel, Ŷi, based on its inputs and
an estimated value of the parameter to identify, θ̂ j. Optimization is done by using the local parameter estimator and
iteratively modifying the value of θ̂ j to minimize the difference between the estimated outputs, Ŷi, and the measured
outputs, Yi (as indicated by Equation 1).

Given a diagnosis submodel Si = (Fi,Yi,Ri, LFi,Ri ), where the residual set is defined as Ri = {ry1(Yi), ry2(Yi), . . .}, a
local parameter estimator for a parameter θ j, related to a fault f j ∈ Fi, can be derived directly from the equations of
the PCMYi , or from any of the constituent PCs ofMYi containing the parameter θ j ifMYi is a multi-output PC.

Example 26. Consider the three-tank system. The diagnosis submodel design algorithm determined that diagnosis
submodel S1 gets residuals rh1(h1,h2) and rh2(h1,h2), hence a local parameter estimator for this diagnosis submodel and
parameter Re12 can be computed from either the multi-output PCMh1,h2 or any of its constituent PCsMh1 andMh2 .
However, a local parameter estimator for diagnosis submodel S1 and parameter Re1 can only be computed from either
the multi-output PCMh1,h2 or the constituent PCMh1 (in this caseMh2 can not be used as local parameter estimator
since parameter Re1 is not included inMh2 ).

As shown in the example, different local parameter estimators can be used to estimate the same parameter value.
Each one of these local parameter estimators provides different features regarding accuracy and estimation time, and
it is up to the user to choose which one of the local parameter estimators must be used, as described in [15]. On
one hand, if the PC is chosen, the estimation process will be faster than using the multi-output PC, since it contains
a smaller number of equations. On the other hand, if the multi-output PC is chosen, the estimation process will be
slower than using the PCs, but, since it uses more measurements for the estimation, the result will likely be more
accurate.

At run time, we use a time limit, and fault identification is triggered either when a unique diagnosis is obtained
or when the time limit is reached [44]. If the local diagnoser reaches an accepting state, the local diagnoser has been
able to uniquely isolate a fault, and the parameter estimation is run only for the isolated fault candidate to determine
its fault magnitude. If the local diagnoser has not been able to reach an accepting state after a predefined amount of
time (for example, when enough data for accurate fault identification are available), the fault identification is started
for all the isolated candidates at that time.

9. Case Study

As a case study, we apply our distributed diagnosis framework to a simulation model of a rover testbed developed
at NASA Ames Research Center [16, 17]. In this section, we first describe the model for the rover, then, we show
several globally diagnosable diagnosis submodel design examples, and finally, we provide on-line diagnosis results in
simulation for different fault situations.

9.1. Rover Modeling
The rover model (Fig. 10) assumes a symmetric rigid frame with four independently-driven wheels and four

motors, one for each wheel. The rover is powered by four batteries connected in series. Four sensors, V∗1 , V∗2 , V∗3 , and
V∗4 , measure the voltage in each one of the batteries, and another four sensors, ω∗FL, ω∗FR, ω∗BL, and ω∗BR, measure the
wheel velocities.17 The subscripts F, B, L, and R subscripts stand for “front”, “back”, “left” and “right”, respectively.

17Since we are measuring state variables in the rover case study, we will use an asterisk (∗) to denote the measured variables (those belonging to
Y), and distinguish them from their equivalent state variables (those belonging to X).
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Figure 10: Rover schematic with the five diagnosis submodels.

Here, we summarize the model and refer the reader to [16, 17] for additional details. The state equations governing
the dynamic behavior are given as follows. First, the wheel speeds are governed by

c1 : ωFL =
1
Jw

∫ t

t0

(
kτiFL − µ f ,FLωFL − rwFgl,FL + rwFgr cos γ

)
· dt,

c2 : ωFR =
1
Jw

∫ t

t0

(
kτiFR − µ f ,FRωFR − rwFgl,FR − rwFgr cos γ

)
· dt,

c3 : ωBL =
1
Jw

∫ t

t0

(
kτiBL − µ f ,BLωBL − rwFgl,BL + rwFgr cos γ

)
· dt,

c4 : ωBR =
1
Jw

∫ t

t0

(
kτiBR − µ f ,BRωBR − rwFgl,BR − rwFgr cos γ

)
· dt.

The ω variables denote rotational wheel speeds, Jw denotes the wheel inertia, rw denotes the wheel radius, and for
wheel w, µ f ,w is a friction coefficient. The wheel forces are summarized in Fig. 11. For a wheel w, Fgl,w = µgl(vw − v)
is the longitudinal ground force on a wheel, where µgl is a friction coefficient, vw is the translational wheel velocity,
and v is the translational velocity of the rover frame. When there is a difference in the relative velocity between the
wheel and the ground, a force is produced, due to friction, that pushes the wheel along the ground. Forces are also
present resisting the rotational movement, Fgr,w = µrωw for wheel w, where µr is a friction coefficient. Since µr is the
same for all wheels, all the Fgr,w forces are the same and so we drop the w subscript. For wheel w, the kτiw term is
for the motor torque, where iw is the motor current and kτ is an energy transformation gain. The angle γ = arctan l

b ,
where l is the rover length, and b is its width.

The translational velocity v and rotational velocity ω of the rover are governed by

c5 : v =
1
m

∫ t

t0

(
Fgl,FL + Fgl,FR + Fgl,BL + Fgl,BR

)
· dt,

c6 : ω =
1
J

∫ t

t0

(
d cos γFgl,FR + d cos γFgl,BR − d cos γFgl,FL − d cos γFgl,BL − 4dFgr

)
· dt,

where m is the rover mass, J is its rotational inertia, d is the distance from the center of the rover to each wheel.
The wheels are driven by DC motors with PID control that sets the voltages V applied to the motors. The motor
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Figure 11: Rover forces.

currents i are governed by

c7 : iFL =
1
L

∫ t

t0
(VFL − iFLReFL − kωωFL) · dt,

c8 : iFR =
1
L

∫ t

t0
(VFR − iFRReFR − kωωFR) · dt,

c9 : iBL =
1
L

∫ t

t0
(VBL − iBLReBL − kωωBL) · dt,

c10 : iBR =
1
L

∫ t

t0
(VBR − iBRReBR − kωωBR) · dt,

where L is the motor inductance, R is the motor resistance, and kω is an energy transformation term.
The batteries are described by an electrical circuit equivalent model that includes a large capacitance Kb in parallel

with a resistance Rep, together in series with another resistance Res. The battery charge variables qi are governed by

c11 : q1 =

∫ t

t0
V1/Re1 − (iFL + iFR + iBR + iBL) · dt,

c12 : q2 =

∫ t

t0
V2/Re2 − (iFL + iFR + iBR + iBL) · dt,

c13 : q3 =

∫ t

t0
V3/Re3 − (iFL + iFR + iBR + iBL) · dt,

c14 : q4 =

∫ t

t0
V4/Re4 − (iFL + iFR + iBR + iBL) · dt.

As we previously mentioned, we measure the wheel speeds and the battery voltages.

c15 : ω∗FL = ωFL,

c16 : ω∗FR = ωFR,

c17 : ω∗BL = ωBL,

c18 : ω∗BR = ωBR,

c19 : V∗1 = q1/Kb1 − Re1(iFL + iFR + iBR + iBL),
c20 : V∗2 = q2/Kb2 − Re1(iFL + iFR + iBR + iBL),
c21 : V∗3 = q3/Kb3 − Re1(iFL + iFR + iBR + iBL),
c22 : V∗4 = q4/Kb4 − Re1(iFL + iFR + iBR + iBL),
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In this work we consider the following faults: increases in motor friction (µ+
f ,FL, µ+

f ,FR, µ+
f ,BL, µ+

f ,BR), capacitance
loss in the batteries (K−b1, K−b2, K−b3, K−b4), and increases in electrical resistance in the motors (Re+

FL, Re+
FR, Re+

BL, Re+
BR).

The fault signatures for the set of faults and measurements for the rover are listed in Table 4.18 To improve readability,
only a subset of the residual orderings is shown.

Table 4: Fault signatures for the global model of the rover.
Fault rV1 rV2 rV3 rV4 rωFL rωFR rωBL rωBR Residual Orderings

µ+
f ,FL 0- 0- 0- 0- 0- 0- 0* 0- rωFL ≺ rV1 , rωFL ≺ rV4

µ+
f ,FR 0- 0- 0- 0- 0- 0- 0- 0* rωFR ≺ rV1 , rωFR ≺ rV4

µ+
f ,BL 0- 0- 0- 0- 0* 0- 0- 0- rωBL ≺ rV1 , rωBL ≺ rV4

µ+
f ,BR 0- 0- 0- 0- 0- 0* 0- 0- rωBR ≺ rV1 , rωBR ≺ rV4

K−b1 +0 00 00 00 00 00 00 00 rV1 ≺ rV2 , rV1 ≺ rV3

K−b2 00 +0 00 00 00 00 00 00 rV2 ≺ rV1 , rV2 ≺ rV3

K−b3 00 00 +0 00 00 00 00 00 rV3 ≺ rV1 , rV3 ≺ rV2

K−b4 00 00 00 +0 00 00 00 00 rV4 ≺ rV1 , rV4 ≺ rV2

Re+
FL 0+ 0+ 0+ 0+ 0- 0- 0* 0- rωFL ≺ rωFR , rωFL ≺ rωBL

Re+
FR 0+ 0+ 0+ 0+ 0- 0- 0- 0* rωFR ≺ rωFL , rωFR ≺ rωBL

Re+
BL 0+ 0+ 0+ 0+ 0* 0- 0- 0- rωBL ≺ rωFL , rωBL ≺ rωFR

Re+
BR 0+ 0+ 0+ 0+ 0- 0* 0- 0- rωBR ≺ rωFL , rωBR ≺ rωFR

We have a set of eight PCs in the rover, one for each measurement, as generated by Algorithm 1. The PCs are
defined as follows:

MV1 = ({{q1, iFL, iFR, iBL, iBR} ∪ {Kb1,ReFL,ReFR,ReBL,ReBR} ∪ {vFL, vFR, vBL, vBR, ω
∗
FL, ω

∗
FR, ω

∗
BL, ω

∗
BR} ∪ {V

∗
1 }},

{c7, c8, c9, c10, c11, c15, c16, c17, c18, c19}),

MV2 = ({{q2, iFL, iFR, iBL, iBR} ∪ {Kb2,ReFL,ReFR,ReBL,ReBR} ∪ {vFL, vFR, vBL, vBR, ω
∗
FL, ω

∗
FR, ω

∗
BL, ω

∗
BR} ∪ {V

∗
2 }},

{c7, c8, c9, c10, c12, c15, c16, c17, c18, c20}),

MV3 = ({{q3, iFL, iFR, iBL, iBR} ∪ {Kb3,ReFL,ReFR,ReBL,ReBR} ∪ {vFL, vFR, vBL, vBR, ω
∗
FL, ω

∗
FR, ω

∗
BL, ω

∗
BR} ∪ {V

∗
3 }},

{c7, c8, c9, c10, c13, c15, c16, c17, c18, c21}),

MV4 = ({{q4, iFL, iFR, iBL, iBR} ∪ {Kb4,ReFL,ReFR,ReBL,ReBR} ∪ {vFL, vFR, vBL, vBR, ω
∗
FL, ω

∗
FR, ω

∗
BL, ω

∗
BR} ∪ {V

∗
4 }},

{c7, c8, c9, c10, c14, c15, c16, c17, c18, c22}),

MωFL = ({{ωFL, iFL,w, v} ∪ {µ f ,FL,ReFL} ∪ {vFL, ω
∗
FR, ω

∗
BL, ω

∗
BR} ∪ {ω

∗
FL}}, {c1, c5, c6, c7, c15, c16, c17, c18}),

MωFR = ({{ωFR, iFR,w, v} ∪ {µ f ,FR,ReFR} ∪ {vFR, ω
∗
FL, ω

∗
BL, ω

∗
BR} ∪ {ω

∗
FR}}, {c2, c5, c6, c8, c15, c16, c17, c18}),

MωBL = ({{ωBL, iBL,w, v} ∪ {µ f ,BL,ReBL} ∪ {vBL, ω
∗
FL, ω

∗
FR, ω

∗
BR} ∪ {ω

∗
BL}}, {c3, c5, c6, c9, c15, c16, c17, c18}),

MωBR = ({{ωBR, iBR,w, v} ∪ {µ f ,BR,ReBR} ∪ {vBR, ω
∗
FL, ω

∗
FR, ω

∗
BL} ∪ {ω

∗
BR}}, {c4, c5, c6, c10, c15, c16, c17, c18}).

Fault signatures for the minimal submodels are shown in Table 5. As it happens with the three-tank system, the
PCs are able to decouple the faults from the measurements, so that each residual is only affected by a subset of the
faults.

Next, we show the application of our distributed diagnosis framework to the rover. First, we show different design
scenarios and compare the design obtained with the proposed approach (using PCs) against the design obtained using
the approach in [10] (using the global system model). Then, we apply our unified distributed diagnosis framework to
several fault scenarios to illustrate on-line fault diagnosis capabilities of the approach.

9.2. Globally Diagnosable Diagnosis Submodel Design Experiments
Let us consider the initial rover configuration with F = {µ+

f ,FL, µ
+
f ,FR, µ

+
f ,BL, µ

+
f ,BR,K

−
b1,K

−
b2,K

−
b3,K

−
b4, Re+

FL,Re+
FR,

Re+
BL,Re+

BR} and Y = {V∗1 ,V
∗
2 ,V

∗
3 ,V

∗
4 , ω

∗
FL, ω

∗
FR, ω

∗
BL, ω

∗
BR}. Now, assume that the system is split into five diagnosis

18We use an (*) in Table 4 to represent a qualitative ambiguity in the result of our fault signature generation algorithm. The * can manifest either
as a + or a - on the real system, e.g., the 0* in the table is a shorthand that represents two distinct signatures, 0+ and 0-.
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Table 5: Fault signatures for the set of minimal submodels of the rover.
Fault rV1(V1) rV2(V2) rV3(V3) rV4(V4) rωFL(ωFL) rωFR(ωFR) rωBL(ωBL) rωBR(ωBR) Residual Orderings

µ+
f ,FL 00 00 00 00 0- 00 00 00 ∅

µ+
f ,FR 00 00 00 00 00 0- 00 00 ∅
µ+

f ,BL 00 00 00 00 00 00 0- 00 ∅
µ+

f ,BR 00 00 00 00 00 00 00 0- ∅
K−b1 +0 00 00 00 00 00 00 00 ∅
K−b2 00 +0 00 00 00 00 00 00 ∅
K−b3 00 00 +0 00 00 00 00 00 ∅
K−b4 00 00 00 +0 00 00 00 00 ∅

Re+
FL 0+ 0+ 0+ 0+ 0- 00 00 00 ∅

Re+
FR 0+ 0+ 0+ 0+ 00 0- 00 00 ∅

Re+
BL 0+ 0+ 0+ 0+ 00 00 0- 00 ∅

Re+
BR 0+ 0+ 0+ 0+ 00 00 00 0- ∅

submodels (see Fig. 10): S1 related to the front-left wheel components, S2 for the front-right wheel components,
S3 for the back-left wheel components, S4 for the back-right wheel components, and S5 for the components of the
battery. Yi and Fi subsets for each diagnosis submodel are described as follows:

S1 ⇒ F1 = {µ+
f ,FL,Re+

FL}; Y1 = {ω∗FL},

S2 ⇒ F2 = {µ+
f ,FR,Re+

FR}; Y2 = {ω∗FR},

S3 ⇒ F3 = {µ+
f ,BL,Re+

BL}; Y3 = {ω∗BL},

S4 ⇒ F4 = {µ+
f ,BR,Re+

BR}; Y4 = {ω∗BR},

S5 ⇒ F5 = {K−b1,K
−
b2,K

−
b3,K

−
b4}; Y5 = {V∗1 ,V

∗
2 ,V

∗
3 ,V

∗
4 }.

First, let us assume we use theM-based residuals, hence R1 = {rωFL }, R2 = {rωFR }, R3 = {rωBL }, R4 = {rωBR }, and
R5 = {rV1 , rV2 , rV3 , rV4 }. Analyzing global diagnosability from Table 4, we see that only diagnosis submodel S5 is
globally diagnosable, since faults K−b1 to K−b4 can be distinguished from the rest of the faults in the system, since the
effects produced by the faults (+0 for all of them) are different from the rest of effects produced in sensors V1 to V4
for the rest of the faults considered. None of the remaining diagnosis submodels is globally diagnosable, hence we
have to add new residuals to each of those diagnosis submodels in order to satisfy the global diagnosability design
constraints. In particular, diagnosis submodels S1 to S4 need to merge three residuals each. Table 6 shows the design
results usingM-based residuals as in [10]. The table indicates the initial residual sets for each diagnosis submodel
and the additional residuals needed to make the diagnosis submodels globally diagnosable.

Table 6: Design results usingM-based residuals for the first design scenario.
Diagnosis submodel Diagnosable? Initial Ri set Additional residuals

S1 No rωFL rωBL , rV1

S2 No rωFR rωBL , rV1

S3 No rωBL rωBR , rV1

S4 No rωBR rωBL , rV1

S5 Yes rV1 , rV2 , rV3 , rV4 ∅

Now assume that we use the PC-based residuals, i.e., R1 = {rωFL(ωFL)}, R2 = {rωFR(ωFR)}, R3 = {rωBL(ωBL)}, R4 =

{rωBR(ωBR)}, and R5 = {rV1(V1), rV2(V2), rV3(V3), rV4(V4)}. If we look at Table 5, we see that diagnosis submodel S5 is
globally diagnosable, and the remaining diagnosis submodels are not globally diagnosable, hence they all need to run
the design algorithm to find the minimal submodels that need to be merged to get all diagnosis submodels globally
diagnosable. Using both the greedy algorithm and BFS, we obtained that only two PCs need to be merged with the to
make diagnosis submodels S1 to S4 globally diagnosable. Table 7 shows the design results using PC-based residuals.
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Table 7: Design results using PC-based residuals for the first design scenario.
Diagnosis submodel Diagnosable? Initial Ri set Additional residuals

S1 No rωFL(ωFL) rV4(V4)

S2 No rωFR(ωFR) rV4(V4)

S3 No rωBL(ωBL) rV4(V4)

S4 No rωBR(ωBR) rV4(V4)

S5 Yes rV1(V1), rV2(V2), rV3(V3), rV4(V4) ∅

As shown in Tables 6 and 7, using PC-based residuals the design results are improved in two different ways: (1)
the size of the local diagnosers for diagnosis submodels S1 to S4 after the design process is smaller than the size of
the diagnosers using M-based residuals (using PC-based residuals, only one additional residual, instead of two, is
needed); and (2), PC-based residuals allow to have a fully distributed approach, not only regarding local diagnosers,
but also regarding the residual generators (withM-based residuals the diagnosis process will be distributed, but the
residual computation will still be centralized).

Another additional advantage of our approach is that, it would be able to provide globally diagnosable diagnosis
submodel with almost no design effort. As an example of this situation, consider now the rover with the same set of
measurements Y , but a reduced set of fault candidates: F = {µ+

f ,FL, µ
+
f ,FR, µ

+
f ,BL, µ

+
f ,BR,K

−
b1,K

−
b2, K−b3,K

−
b4}. Diagnosis

submodels are similar to the first scenario:

S1 ⇒ F1 = {µ+
f ,FL}; Y1 = {ω∗FL},

S2 ⇒ F2 = {µ+
f ,FR}; Y2 = {ω∗FR},

S3 ⇒ F3 = {µ+
f ,BL}; Y3 = {ω∗BL},

S4 ⇒ F4 = {µ+
f ,BR}; Y4 = {ω∗BR},

S5 ⇒ F5 = {K−b1,K
−
b2,K

−
b3,K

−
b4}; Y5 = {V∗1 ,V

∗
2 ,V

∗
3 ,V

∗
4 }.

After analyzing global diagnosability for this example, we find that whenM-based residuals are used, design for
diagnosis submodels S1 to S4 is still needed, but if PC-based residuals are used, all diagnosis submodels are globally
diagnosable, and no further design is needed. Tables 8 and 9 show these results.

Table 8: Design results usingM-based residuals for the second design scenario.
Diagnosis submodel Diagnosable? Initial Ri set Additional residuals

S1 No rωFL rωBL

S2 No rωFR rωBL

S3 No rωBL rωBR

S4 No rωBR rωBL

S5 Yes rV1 , rV2 , rV3 , rV4 ∅

Table 9: Design results using PC-based residuals for the second design scenario.
Diagnosis submodel Diagnosable? Initial Ri set Additional residuals

S1 Yes rωFL(ωFL) ∅
S2 Yes rωFR(ωFR) ∅
S3 Yes rωBL(ωBL) ∅
S4 Yes rωBR(ωBR) ∅
S5 Yes rV1(V1), rV2(V2), rV3(V3), rV4(V4) ∅

Having shown the design properties of our distributed framework, the next section shows the performance of the
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Figure 12: Residual signals for the centralized approach when a 20% friction increase in the front-left wheel, µ+
f ,FL, occurs at time 50 s.

distributed diagnosis approach using simulated data for several fault diagnosis experiments and compares the results
obtained against a centralized approach.

9.3. On-line Fault Diagnosis

As a particular example to demonstrate on-line diagnosis in this framework, consider a 20% friction increase in the
front-left wheel of the rover, µ+

f ,FL, occurring at time 50 s. Fig. 12 shows the plots of the residuals for this fault when
the centralized approach is used. At time 50.05 s, a decrease in residual rωFL is detected by the centralized diagnoser,
and the diagnoser moves to a state where faults µ+

f ,FL and Re+
FL are generated as the initial set of candidates. Later,

at 50.15 s, decreases in residuals rV1 , rV2 , rV3 , and rV4 are detected, and the diagnoser moves to a state with diagnosis
{µ+

f ,FL}. Hence, the hypothesized path to the state with {Re+
FL} is eliminated and the diagnosis is confirmed as {µ+

f ,FL}.
At this point, the fault identification for µ+

f ,FL is triggered, computing the fault magnitude with an accuracy of 97.22%.
Now, let us consider the distributed diagnosis approach for the same fault and the first diagnosis submodel configu-

ration (Table 7). Fig. 13 shows the plots of the residuals of the local diagnoser for diagnosis submodel S1 (rωFL(ωFL,V4)
and rV4(ωFL,V4)). At time 50.05 s, a decrease in residual rωFL(ωFL,V4) is detected in the local diagnoser for S1, which
moves to a state with diagnosis {µ+

f ,FL, Re+
FL} as the initial set of candidates. No deviations are detected in the resid-

uals for the rest of the local diagnosers. At 50.20 s, a decrease in rV4(ωFL,V4) is detected and the diagnoser moves to
a state with diagnosis {µ+

f ,FL}. Since the diagnoser has reached to an accepting state, a global diagnosis has been
achieved. Similarly to the centralized approach, the fault identification is triggered, determining the fault magnitude
with an accuracy of 99.01%.

To make a more detailed study regarding the quality of our approach, we ran a set of several diagnosis experiments
for each one of the faults in the system and considered different fault magnitudes (here we only show results for 5%,
10%, and 20% faults). Each run covered 100 s, and the faults were introduced at time t = 50 s. Gaussian measurement
noise with a power level set to 5% of the average signal power was added to each measurement. For each experiment
we randomly varied the noise signal.

Table 10 shows the results we obtained, comparing the performance of the centralized diagnosis approach against
our distributed diagnosis approach for the first design scenario (Table 7). The metrics in Table 10 consist of the mean
time in seconds to detect faults M f d, the mean time in seconds to isolate faults M f i, and the mean of the accuracy and
standard deviation in the fault identification Mda and Mstd, respectively.
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Figure 13: Residual signals for the local diagnoser of diagnosis submodel S1 when a 20% friction increase in the front-left wheel, µ+
f ,FL, occurs at

time 50 s.

For fault detection, a threshold based on the Z-test is computed, and to account for modeling error, an additional
error term E is added to the threshold [43]. When the absolute value of the mean residual value over a small window
is over this combined threshold, a fault is detected. From Table 10, it is clear that both approaches perform in a
very similar way. In 66.6% of the experiments, the average detection time was the same for both approaches, and
for the rest 33.3% of the experiments, the centralized approach behaved a little bit better than the distributed. This
is due to the PCs decomposition, which partition the system model by using sensors as inputs, which are noisy, and
this corrupts the predictions with noise. Since the detectors were tuned to avoid false alarms, the detectors for the
distributed approach could not be tuned to be as sensitive as for the centralized approach. However, the differences
were not significant.

Fault isolation works, as explained in Section 7, by capturing the qualitative values of residual deviations [7].
Results in Table 10 show very similar isolation times for both approaches, except for the capacitance in the batteries
(K−b ) fault experiments. In these cases, the distributed approach was able to isolate faults in only 0.05 s, while the
centralized approach took up to 0.5 s. This is explained by the enhanced diagnosability obtained by the decoupling
of PCs. However, as it happens with fault detection times, the differences are not significant in general, and we can
consider that both approaches obtain equivalent fault isolation results.

Fault identification works as detailed in Section 8. In our particular implementation, we used non-linear least
squares (LS) as the optimization algorithm and 0.5 s for the time limit. The fault candidate with the smallest LS error
will be selected as the correct fault candidate. Experimental results show that, for most of the experiments, the per-
formance is better for the distributed approach. The smaller size of the local parameter estimators, together with the
reduced number of measurements used by each one, makes the distributed identification approach to converge faster
than the centralized approach. In particular, the mean value of accuracy in the fault identification for the centralized
approach for motor friction (µ+

f ) and resistance in the motors (R+) faults, was 97.5% and 94.7%, respectively. Mean-
while, the mean value of accuracy in the fault identification for the same faults but for the distributed approach was
99.2% and 96.8%, respectively. For capacitance in the batteries (K−b ) faults, both approaches achieved practically the
same accuracy, 99.8% for the centralized approach against 99.6% for the distributed approach. Regarding standard
deviation, in both cases the results are very accurate, although the results for the centralized approach are slightly
better in most of the experiments than the results for the distributed approach. Similarly to the fault detection results,
this was caused by the noisy sensors used as input by the distributed approach.

10. Related Work

Researchers have developed several decentralized and distributed diagnosis schemes in the past, mostly in the
discrete-event framework [6, 36, 37, 45]. Distributed schemes, e.g., [46], unlike decentralized schemes, such as [37],
do not make use of the global system model; instead, they use subsystem models for diagnosis, and the local diagnosers
for each diagnosis submodel communicate their diagnosis results to each other to obtain the global solution. Decen-
tralized diagnosis approaches, e.g., [37], typically start with a global system model to generate the local diagnosers
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Table 10: Centralized and Distributed Diagnosis results for 5%, 10%, and 20% faults for the rover. Mtd is the mean time to detect faults, Mti is the
mean time to isolate faults, and Mda and Mstd are the mean of the accuracy and standard deviation in the fault identification.

Centralized Distributed
Fault Magnitude Mtd(s) Mti(s) Mda(%) Mstd Mtd(s) Mti(s) Mda(%) Mstd

µ+
f ,FL

5% 0.15 0.22 98.04 0.06 0.15 0.32 98.91 0.13
10% 0.10 0.15 97.50 0.09 0.10 0.25 99.65 0.18
20% 0.05 0.12 96.82 0.14 0.05 0.20 99.36 0.27

µ+
f ,FR

5% 0.15 0.21 98.15 0.06 0.15 0.31 98.92 0.13
10% 0.10 0.17 97.51 0.09 0.10 0.24 99.24 0.19
20% 0.05 0.13 97.00 0.14 0.05 0.20 99.23 0.27

µ+
f ,BL

5% 0.15 0.20 97.96 0.06 0.15 0.31 98.94 0.12
10% 0.10 0.16 97.41 0.09 0.10 0.25 99.43 0.18
20% 0.05 0.15 96.95 0.14 0.05 0.20 98.86 0.28

µ+
f ,BR

5% 0.15 0.20 97.97 0.06 0.15 0.29 98.82 0.13
10% 0.10 0.15 97.49 0.09 0.10 0.24 99.25 0.18
20% 0.05 0.15 96.96 0.14 0.05 0.20 99.45 0.29

K−b1

5% 0.05 0.50 99.55 0.00043 0.05 0.05 99.24 0.00053
10% 0.05 0.50 99.82 0.00042 0.05 0.05 99.71 0.00047
20% 0.05 0.50 99.97 0.00031 0.05 0.05 99.89 0.00035

K−b2

5% 0.05 0.50 99.58 0.00043 0.05 0.05 99.20 0.00055
10% 0.05 0.50 99.90 0.00039 0.05 0.05 99.70 0.00039
20% 0.05 0.50 99.93 0.00031 0.05 0.05 99.84 0.00043

K−b3

5% 0.05 0.50 99.63 0.00044 0.05 0.05 99.06 0.00050
10% 0.05 0.50 99.77 0.00040 0.05 0.05 99.57 0.00044
20% 0.05 0.50 99.94 0.00031 0.05 0.05 99.89 0.00032

K−b4

5% 0.05 0.50 99.70 0.00048 0.05 0.05 99.15 0.00051
10% 0.05 0.50 99.82 0.00039 0.05 0.05 99.54 0.00047
20% 0.05 0.50 99.97 0.00033 0.05 0.05 99.81 0.00033

Re+
FL

5% 0.19 0.67 92.80 0.29 0.36 0.66 98.62 0.28
10% 0.14 0.51 94.54 0.49 0.23 0.55 96.70 0.54
20% 0.10 0.45 92.82 0.99 0.16 0.46 95.92 1.30

Re+
FR

5% 0.17 0.67 94.88 0.28 0.28 0.59 95.38 0.27
10% 0.14 0.53 95.96 0.50 0.22 0.53 97.04 0.54
20% 0.08 0.45 94.66 0.94 0.16 0.47 96.01 1.32

Re+
BL

5% 0.19 0.67 94.06 0.29 0.29 0.59 96.41 0.27
10% 0.14 0.54 94.92 0.49 0.23 0.53 97.56 0.52
20% 0.10 0.45 95.63 0.96 0.18 0.51 97.07 1.39

Re+
BR

5% 0.19 0.65 91.16 0.28 0.33 0.63 97.24 0.27
10% 0.14 0.54 95.33 0.49 0.22 0.53 96.12 0.58
20% 0.09 0.45 95.36 1.00 0.18 0.49 98.09 1.32

among which the diagnosis computations get distributed. Each local decentralized diagnoser makes their diagnosis
decision based on only a subset of observable events, and they communicate these decisions to other diagnosers, or to
a centralized coordinator, which uses the global model to generate globally consistent diagnosis solutions. The level
of coordination required between the local diagnosers depends on how each local diagnoser is designed. In [37], three
coordinated decentralized protocols for diagnosis are presented. Coordination is necessary in the first and second pro-
tocols to generate the correct diagnosis result, but the third protocol generates correct results without a coordinator.
Our diagnosis approach is similar to this third protocol, since we do not need a central coordinator, and a failure in
the local diagnoser does not affect the diagnosis capability of the other diagnosers. We attribute this property of our
diagnosis algorithm to the careful design of the local diagnosers based on global diagnosability properties.

Other researchers avoid coordination between local diagnosers by representing the system as a network of commu-
nicating finite state machines, such as in [40, 47]. In these approaches, first, the observable events for each subsystem
are used to generate the individual subsystem diagnoses. Then the subsystem diagnoses are merged to generate the
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global diagnosis result. The approach presented in [47] assumes all observable events are received in the same order
that they were transmitted in. The on-line approach described in [40] does not assume the ordering of observations is
preserved. Our approach avoids these problems since it works only with local observations, and does not communicate
observations or results to other local diagnosers.

In [48], the authors describe an approach where each local diagnoser generates a set of local diagnoses, and
then communicates with its neighbors to reduce the number of hypotheses. The graph of constraints between the
fault hypotheses and the observations is partitioned to minimize communication between local diagnosers. A similar
approach is presented in [46], where the partitioning is based on physical connections.

In [49], the authors also use structural model decomposition (Analytical Redundancy Relations (ARRs) [12] in
their case) to propose a decentralized but coordinated architecture for distributed fault diagnosis of continuous sys-
tems. The system is decomposed into functional subsystems which are provided by the user as input. The architecture
is hierarchical and composed of local diagnosers for subsystems which work with local models. The local diagnosers
are made up of a set of residual generators built upon the ARR concept. Each local diagnoser has a different residual
generator. The hierarchical approach means that the scheme can be replicated at different levels, and work at different
levels in the hierarchy. Unlike our approach, local results need to be communicated to a central supervisor which is
responsible for the fault isolation task.

One of the main differences of our framework regarding other continuous distributed diagnosis approaches is that
we use minimal submodels to design local diagnosers off-line, which yields smaller size diagnosers, and allows a
fully distributed approach. Then, at runtime, all the local diagnosers operate independently to generate local diagnosis
results that are globally correct. Our approach does not require a coordinator, and there is no exchange of diagnosis
information among the diagnosers, only the exchange of measurements.

Our event-based framework is similar to traditional discrete event systems (DES) approaches [36, 45], except that
the event-based models are derived from the continuous model and capture only fault-specific dynamics in a qualitative
abstraction. One difference with pure DES approaches for diagnosis is that we use the local event-based diagnosis to
perform fault isolation, after a robust fault detection stage, thus limiting the event analysis. Other continuous systems
diagnosis approaches also use temporal information in similar ways, e.g., [50–55]. An advantage in our approach is
that temporal information can be automatically generated given the equations and the structural model of the system.

11. Conclusions

In this work, we have developed a novel comprehensive framework for distributed qualitative fault diagnosis
of continuous systems using structural model decomposition, where PCs are used to decouple the faults from the
measurements and compute minimal submodels for distributed diagnosis. Then, the basic PC framework is extended
to allow merging of PCs to design globally diagnosable diagnosis submodels. We proposed an algorithm that merges
PCs (when necessary) to design local distributed diagnosis submodels based on global diagnosability. These local
distributed diagnosis submodels are then used to construct local event-based distributed diagnosers. Finally, we use
the model decomposition capabilities of the PCs not only to improve the design, but also to integrate within our
framework a distributed fault identification approach by developing independent local parameter estimators. Our main
conclusion is that using a structural model decomposition method, such as PCs, together with the existing consistency-
based diagnosis approach using qualitative information, results in an event-based distributed diagnosis framework
covering fault detection, isolation, and identification that scales well, and where the local diagnosers are independent
at every level (no communication between them at any stage is required), do not need a central coordinator, and have
no single point of failure.

Experimental results on a rover showed the improvement of the design using submodels against the approach that
uses the global model of the system [10]. The decoupling obtained by the PCs improved the design process and the
size of the local diagnosers, thus providing a scalable solution. Using the rover, we also ran several experiments
to compare the performance of a centralized approach against our distributed approach regarding fault detection,
isolation and identification. Results for different kinds of faults with several fault magnitudes have shown that the
distributed approach is able to obtain similar detection and isolation results to the centralized approach, while avoiding
the problems related to the centralized scheme. Regarding fault identification, results obtained using the distributed
approach with the local parameter estimators showed an improvement in the accuracy of the estimation with just a
small loss in precision.
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Some limitations of the current approach are the single fault assumption, and the applicability to only continuous
systems. In future work, we plan to extend our approach to multiple faults, based on results presented in [35], and
to hybrid systems, based on results presented in [56, 57]. We are also planning to integrate our distributed diagnosis
framework into a distributed prognostics framework (that also uses structural model decomposition with PCs [58]) to
develop an integrated distributed diagnostics and prognostics framework.
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